
Ensuring Business Process Compliance
Along the Process Life Cycle

David Knuplesch and Manfred Reichert

Abstract
Business processes are subject to semantic constraints that stem from regulations, laws and guidelines, and
are also known as compliance rules. Hence, process-aware information systems have to ensure compliance with
those rules in order to guarantee semantically correct and error-free executability as well as changeability of
their business processes. This report discusses how compliance rules can be defined and how business process
compliance can be ensured for the different phases of the process lifecycle.

1 Motivation

In many past publications [1, 2] the correctness of a pre-specified process model was directly related to its syntac-
tical properties and behavioral soundness (i.e., state consistency). However, these are not the only constraints,
a pre-specified process model has to obey. Typically, process models and corresponding process instances are
also subject to semantic constraints stemming from a variety of sources like standards, regulations, guidelines,
corporate policies, and laws (e.g. Basel or Sarbanes-Oxley-Act). In the following these semantic constraints are
denoted as compliance rules, and techniques for ensuring the compliance of a business process with these rules
are covered under the term business process compliance.
Compliance rules typically restrict the order in which process activities may be executed. Hence, a compliance
rule can be defined as a function that recognizes whether or not a process instance – represented by its execution
trace – complies with the rule (cf. Definition 1). Generally, syntactically correct and sound process models still
can violate compliance rules. When being confronted with large process models or numerous compliance rules,
however, traditional approaches like manual auditing are not feasible. This, in turn, raises the demand for
techniques automatically ensuring business process compliance in all phases of the process lifecycle.

Definition 1 (Compliance Rule). Let Σ be the set of all activities and let Σ� be the set of all possible
execution traces of processes based on activities from Σ. Then: A compliance rule φ defines a function
φ : Σ� → Boolean that considers any trace σ =< e1, . . . , ek > ∈ Σ� either to be true (i.e., to be compliant
with φ) or false (i.e. to violate φ or to be not compliant with it). We further denote σ|= φ :⇔ φ(σ) and
say trace σ satisfies compliance rule φ.

Example 1 (Compliance Rules). Consider the process model Smed from Figure 1. It shows a pre-specified
process model for planning and performing a keyhole surgery in a hospital. Further, consider the informal
compliance rules from Table 1, which must be satisfied by all medical processes of the respective hospital.
In particular, these compliance rules have to be obeyed by the pre-specified process model from Figure 1

Institute of Databases and Information Systems
Ulm University, Germany
e-mail: {david.knuplesch,manfred.reichert}@uni-ulm.de

1

2 Knuplesch, Reichert

S
ur

gi
ca

lS
ui

te

discharge letter
for referring phys.

O
ut

pa
tie

nt
D

ep
ar

tm
en

t
S

ur
gi

ca
lW

ar
d

M
TA

P
hy

si
ci

an
P

hy
si

ci
an

N
ur

se

Admit
patient

Perform
checkup

Examine
patient

Inform about
risks

Inform about
anesthesia

Make
decision

Check
patient record

Admit
patient

Schedule
surgery

Write
discharge letter

Write
discharge letter

Make
lab test

Create
surgery report

Provide
postsurgical care

Discharge
patient

patient referral
to hospital

Transport
patient to ward

surgery
ok

Perform
surgery

Prepare
patient

Send patient
to surgical suite

Fig. 1: Pre-Specified Process Model Smed

as well. When analyzing the dynamic behavior of the process model, its soundness [1, 2] can be easily
verified. However, having a closer look at the model and the compliance rules from Table 1, one can
recognize that the process model contains semantic errors; i.e., it violates some of the given compliance
rules. For example, according to the process model the surgical ward may send the patient to the surgical
suite before he is prepared; the surgery could be even performed without having prepared the patient at
all. Obviously, this violates compliance rule c1. Further, in the given process model the patient is either
informed about anesthesia or risks, but not about both. However, according to compliance rule c3 the
patient must be always informed about the risks after the examination. Hence, c3 is potentially violated.

Table 1: Examples of Compliance Rules for Medical Processes

c1 Before a surgery may be performed the patient has to be prepared for it and be sent to the surgical suite.

c2 After examining the patient a decision has to be made. However, this must not be done before the examination.

c3 After the examination, the patient has to be informed about the risks of the (planned) surgery.

c4 Before scheduling the surgery the patient has to be informed about anesthesia.

c5 If a surgery has not been scheduled it must not be performed.

c6 After a patient is discharged a discharge letter has to be written.

c7 After performing the surgery and before writing the discharge letter, a surgery report must be created and a lab test

be made.

Generally, ensuring business process compliance not only concerns the modeling phase of the process lifecycle
[3], i.e., the definition of pre-specified process models. Additionally, compliance has to be monitored for process
instances during their execution. This is crucial for process instances being defined or adapted on-the-fly [4], i.e.,
for which there is no fully pre-specified process model. Further, compliance monitoring at run-time is required
if a priori compliance checking is not feasible, e.g., if the process model is too large or the compliance rules
are too complex. Finally, for completed process instances, a PAIS needs to be able to determine whether or
not these instances were executed in compliance with given regulations, laws and guidelines. For this purpose,
execution logs need to be analyzed accordingly.

Ensuring Business Process Compliance Along the Process Life Cycle 3

Independent from the process lifecycle phase for which business process compliance has to be ensured, compliance
rules have to be specified in a machine-readable way. Hence, this report first deals with issues related to the
modeling of compliance rules in Section 2. Following this, it will be shown how compliance can be ensured during
the different phases of the process lifecycle. More precisely, Section 3 addresses a priori compliance checking in
the process modeling phase. Then, Section 4 shows how compliance rules can be monitored during the execution
of process instances, whereas Section 5 discusses issues related to the compliance of completed process instances.
Section 6 further illustrates how compliance can be ensured in the context of process changes. We address the
user perspective in Section 7 and present existing approaches enabling business process compliance in Section 8.
The report closes with a summary in Section 9.

2 Modeling Compliance Rules

As prerequisite for verifying business process compliance of pre-specified process models, process instances or
process execution logs, corresponding compliance rules need to be provided in a machine-readable way. In
literature, there exist different approaches for this. One way to define and represent compliance rules is the
usage of Linear Temporal Logic (LTL) [5]. LTL is a modal temporal logic with modalities referring to time. It
enhances ordinary propositional logic with additional temporal operators as specified in Definition 2.

Definition 2 (Syntax of Linear Temporal Logic). A formula <LTL> is a syntactical correct LTL
formula if it complies with the following grammar (expressed in BNF):

<LTL>::= � | ⊥ |¬ <LTL> | (<LTL>)
| X <LTL> |F <LTL> |G <LTL>

| <LTL> ∧ <LTL> | <LTL>⇒<LTL>

| <LTL> ∨ <LTL> | <LTL> U <LTL>

| <LTL> W <LTL>

In Definition 2, X , F , G , U , and W correspond to temporal operators: X means next, F means eventually,
G means global, U means until, and W means weakly until. Further, < LTL > may contain propositional
variables. In our context, these variables correspond to the execution of activities (e.g. G (Discharge patient ⇒
FWrite discharge letter)).
The temporal operators enable the navigation from point to point on a time line. Definition 3 provides the
formal semantics of these temporal operators using recursive equitations.

Definition 3 (Semantics of Linear Temporal Logic). LTL is defined on infinite traces. Hence,
for any execution trace σ =< e1, e2, e3, . . . , en > we first define its infinite extension σ :=<
e1, e2, e3, . . . , en, ∅, ∅, · · · > by adding empty events after event en. Further let φ and ψ be LTL formulas.

σ|= φ :⇔ σ|= φ

σ =< e1, e2, e3, · · · > |= Xφ :⇔ < e2, e3, · · · > |= φ

1. σ|= Fφ :⇔ σ|= φ ∨ XFφ
2. σ|= Gφ :⇔ σ|= φ ∧ XGφ
3. σ|= φUψ :⇔ σ|= ψ ∨ (φ ∧ X (φUψ)), whereby ψ has to occur eventually (i.e., Fψ holds).
4. σ|= φWψ :⇔ σ|= ψ ∨ (φ ∧ X (φWψ)), whereby ψ need not occur eventually (i.e., G¬ψ is allowed).

Example 2 illustrates how LTL can be used for modeling compliance rules.

4 Knuplesch, Reichert

Example 2 (Modeling Compliance Rules with LTL). Table 2 provides examples illustrating the use of LTL.
More precisely, the informal compliance rules from Table 1 are now formally defined based on LTL.

Table 2: Representing the Compliance Rules from Table 1 in LTL

c1 ¬Perform surgeryW (Prepare patient ∧ (¬Perform surgeryW Send patient to surgical suite))

c2 (G (Examine patient ⇒ FMake decision)) ∧ (¬Make decisionUExamine patient)

c3 G (Examine patient ⇒ F Inform about risks)

c4 ¬Schedule surgeryW Inform about anesthesia

c5 (G¬Schedule surgery) ⇒ (G¬Perform surgery)

c6 G (Discharge patient ⇒ FWrite discharge letter)

c7 G (¬Perform surgery ⇒ (FWrite discharge letter ⇒ ((¬Write discharge letterUCreate surgery report) ∧
(¬Write discharge letterUMake lab test))))

Obviously, the formal definition of compliance rules by the use of LTL or other temporal logics (e.g., Table 2)
requires expert knowledge. In particular, LTL expressions will be not understandable to domain experts. Hence,
graphical notations like Compliance Rule Graphs (CRGs) have been suggested [6]. CRGs allow modeling com-
pliance rules on a higher level of abstraction based on graphs. CRGs further define a compliance rule by means
of an antecedent pattern complemented by a consequence pattern. Both, the antecedent and the consequence
pattern consist of occurrence and absence nodes. These nodes are connected by directed edges that may also
connect antecedent nodes with consequence nodes. While nodes require the existence or absence of activities,
the edges connecting them describe respective activity sequences. Note that edges must not connect two absence
nodes.
The semantics of an CRG is as follows: Each trace will be compliant with the CRG, if for any match of the
antecedent pattern to the trace’s entries the related consequence pattern has to find at least one suitable match
as well. Further, if there exists no match of the antecedent pattern the trace will be compliant as well. The
latter kind of compliance is denoted as trivial compliance.
Any match of the antecedent pattern to a trace is a mapping from each antecedent occurrence node to one of
the entries of the trace. For sequenced antecedent occurrence nodes, whose sequence is expressed by edges, the
corresponding trace entries have to obey the same sequence. Further, for each antecedent absence node, there
must be no trace entry of the antecedent absence node’s activity that obeys the sequences with trace entries
of adjacent antecedent occurrence nodes denoted by appropriate edges. A suitable match of the consequence
pattern maps any consequence occurrence node to a corresponding trace entry as well. Further those trace
entries have to consider the sequence denoted by the edges as well. In addition, there must be no trace entry
of the consequence absence node’s activity that obeys sequences with trace entries of adjacent antecedent and
consequence occurrence nodes that are denoted by appropriate edges. Examples 3 and 4 illustrate the semantics
of CRG-based constraints.

Example 3 (Compliance of Simple CRGs). We consider Figure 2 in order to exemplarily describe the
semantics of CRGs. More precisely, two CRGs and related execution traces are provided in Figure 2A
and Figure 2B respectively. Furthermore, for each trace we indicate whether the corresponding process
instance complies with the respective CRG or violates it.

Regarding the two CRGs from Figure 2, for example, trivial compliance holds for σ1, σ4, and σ9.
Obviously, for each of theses traces at least one antecedent occurrence node can not be mapped to any
trace entry; e.g., A does not occur in σ1. Trace σ7 constitutes another example of trivial compliance
although the antecedent occurrence node B can be mapped to a trace entry; however, trace σ7 also
contains an entry of activity A (preceding the entry of B) which corresponds to the antecedent absence
node (i.e., this entry prevents the antecedent pattern from matching with σ7). To allow for a match of the
antecedent pattern in the given context there should not occur an A preceding the B in σ7.

Ensuring Business Process Compliance Along the Process Life Cycle 5

A B

Antecedent
occurrence node

Consequence
occurrence node

� = < E, D, F, G, B >

� = < C, A, B, D, B >

� = < A, F, A, D, B >

� = < G, C, F, D, G >

� = < G, C, B, A, D >

� = < A, D, B, G, A >

BA C

Antecedent
absence node

Consequence
absence node

� = < A, B, F, C, D >

� = < B, F, D, B, A >

� = < G, F, E, D, E >

� = < G, D, B, F, D >

� = < B, G, E, C, D >

� = < B, A, B, F, C >

1

2

3

4

5

6

7

8

9

10

11

12

trivial compliant

compliant

trivial compliant

compliant

violation

violation

trivial compliant

compliant

compliant

trivial compliant

violation

violation

A

BA

Antecedent pattern

Antecedent pattern

A B

Consequence pattern

BA C

no match

< C, A, B, D, B >

< A, F, A, D, B >

< A, F, A, D, B >

no match

< G, C, B, A, D >

< A, D, B, G, A >

< A, D, B, G, A >

Consequence pattern

-

< C, A, B, D, B >, < C, A, B, D, B >

< A, F, A, D, B >

< A, F, A, D, B >

-

no match

< A, D, B, G, A >,

no match

A)

B)

no match (< B, A, B, F, C >)

< B, F, D, B, A >

< B, F, D, B, A >

no match

< G, D, B, F, D >

< B, G, E, C, D >

< B, A, B, F, C >

(not < B, A, B, F, C >)

-

< B, F, D, B, A >

< B, F, D, B, A >

-

< G, D, B, F, D >

no match (< B, G, E, C, D >)

no match (< B, A, B, F, C >)

-

Fig. 2: Simple Compliance Rule Graphs

Consider now the non-trivial compliant traces: σ2, σ3, σ8, and σ10. Concerning σ2, the antecedent pattern
A matches once, and there are two suitable matches of the consequence pattern B. Regarding σ3, A occurs
twice. Since B succeeds both occurrences of A, there is a suitable mapping of the consequence pattern in
both cases. The same applies to σ8 and the CRG depicted in Figure 2B: There are two mappings of the
antecedent pattern in terms of the two B that do not have a preceding A (but a succeeding one). Further,
for both mappings there is no C succeeding the B. Hence, trace σ8 is compliant with the CRG depicted in
Figure 2B. Finally, σ10 contains exactly one mapping of the antecedent pattern B. Since no C is following,
the consequence pattern maps as well.

Finally, let us consider the non-compliant traces σ5, σ6, σ11, and σ12. σ5 violates the CRG from Figure 2A
since the antecedent pattern maps on the A, but no suitable mapping of the consequence pattern with a
B following the A can be found (the only occurring B precedes A). Regarding σ6, the antecedent pattern
maps twice. However, while for the first A there exists a suitable mapping of the consequence pattern
with the B, the second A is not followed by any B; i.e., trace σ6 violates the CRG depicted in Figure 2A.
Regarding the CRG from Figure 2B and σ11, the B allows for the antecedent pattern to match, while
the succeeding C prohibits the consequence pattern to match. Finally, consider the violation of the CRG
from Figure 2B by σ12: Due to the presence of the A, the antecedence pattern cannot map to the second
occurrence of B, but only to the first one. Due to the presence of the C at the end of the trace, however,
no suitable match of the consequence pattern is possible.

Example 4 (Compliance of Complex CRGs). Figure 3 provides two additional CRGs and related execution
traces. Again, for each trace it is indicated whether the corresponding process instance complies with the
respective CRG or violates it.

Regarding Figure 3A, for example, trivial compliance holds for σ13 and σ16. Obviously, for each of theses
traces at least one antecedent occurrence node can not be mapped to any trace entry. Furthermore, σ15, σ21,

6 Knuplesch, Reichert

� = < A, C, B, G, C >

� = < E, A, E, C, D >

� = < E, A, E, B, D >

� = < G, B, E, G, D>

� = < A, F, D, G, B >

� = < A, F, D, C, D >

13

14

15

16

17

18

19

20

21

22

23

24

Antecedent pattern

Antecedent pattern

Consequence pattern

no match

< E, A, E, C, D >

no match (< E, A, E, B, D >)

no match

< A, F, D, G, B >

< A, F, D, C, D >

< A, F, D, C, D >

Consequence pattern

-

< E, A, E, C, D >

-

-

no match

< A, F, D, C, D >

no match

C)

D)

< E, D, F, G, B >

< D, F, C, E, B >

no match (< A, B, C, E, D >)

no match (< G, C, B, A, D >)

< C, F, B, G, E >

< C, F, D, E, B >

< E, D, F, G, B >

< D, F, C, E, B >

-

-

no match

no match (< C, F, D, E, B >)

C

B
DA

A

DC

B A B A

DC

B

trivial compliant

compliant

trivial compliant

trivial compliant

violation

violation

� = < E, D, F, G, B >

� = < D, F, C, E, B >

� = < A, B, C, E, D >

� = < G, C, B, A, D >

� = < C, F, B, G, E >

� = < C, F, D, E, B >

compliant

compliant

trivial compliant

trivial compliant

violation

violation

B
DA

C

B
DA

Fig. 3: More Complex Compliance Rule Graphs

and σ22 also constitute examples of trivial compliance although the antecedent occurrence nodes can be
mapped to trace entries; however, the traces contain entries of the antecedent absence nodes’ activities as
well (i.e., those prevent the antecedent patterns from being matched). Regarding σ15 there should be no B
between A and D to allow for a match of the antecedent pattern of the CRG from Figure 3A. Regarding
σ21 and σ22 no A should occur, in turn, to allow for a match of the antecedent pattern of the CRG from
Figure 3B.

Consider now the non-trivial compliant traces σ14, σ19, and σ20. σ14 contains an A succeeded by a D;
between these entries there is no B such that the antecedent pattern of respective CRG (cf. Figure 3A)
matches. Furthermore, the consequence pattern also matches since σ14 contains an entry of the required
C between A and D. With a B and no A the two traces σ19 and σ20 allow for mappings of the antecedent
pattern. Further, both traces contain a D not preceded by C (while C in σ20 succeeds the D, σ19 contains
no C at all); i.e., both traces allow for a suitable mapping of the consequence pattern, and are thus
compliant with the CRG from Figure 3B.

Finally, let us consider the non-compliant traces σ17, σ18, σ23, and σ24. Regarding Figure 3A and trace
σ17, the antecedence pattern can be mapped to the trace entries A and D, since the B is not in between;
however, the consequence pattern cannot match since σ17 contains no C. Trace σ18 even enables two
matches of the antecedent pattern of the CRG from Figure 3A: the first one consists of the A and the D
in the middle, while the second match consists of the same A and the D at the end. Since the latter is
preceded by C, the second match can be enriched with a suitable mapping of the consequence pattern.
Nevertheless, trace σ18 violates the CRG from Figure 3A, since there is no C between the A and the
D of the first mapping. Regarding trace σ23, the antecedent pattern maps to the B, but the D of the
consequence pattern is missing (i.e., the C does not matter). Indeed, σ24 even contains a D, but this is
preceded by a C; i.e., the consequence pattern cannot map while the antecedent pattern maps. Hence, σ24

violates the CRG depicted in Figure 3B.

Ensuring Business Process Compliance Along the Process Life Cycle 7

Example 5 (Modeling Compliance Rules by the Use of CRGs). In Figure 4, the compliance rules from
Table 1 and Table 2 respectively are re-modeled by means of CRGs.

Antecedent
occurrence

Antecedent
absence

Consequence
occurrence

Consequence
absence

Inform about
risks

Inform about
anesthesia

Send patient to
surgical suite

Discharge
patient

Write discharge
letter

Perform
surgery

Write discharge
letter

Create surgery
report

Make lab test

Schedule
surgery

Perform
surgery

Schedule
surgery

Perform
surgery

Make
decision

Examine
patient

Make
decision

Prepare
patient

c1

c

cc

c c

c

2

6

75

4

3

Examine
patient

Fig. 4: Representing the Compliance Rules from Tables 1 and 2 as CRGs

3 A-priori Compliance Checking

Once the compliance rules have been modeled (e.g., by using CRGs), compliance of pre-specified process models
with those rules can be checked. This is denoted as a-priori compliance checking since the compliance of processes
with regulations is checked before their execution, i.e., before any process instance is executed based on the
pre-specified process model. According to Definition 4, a pre-specified process model totally complies with a
given compliance rule, if and only if the model solely allows for traces being compliant with the rule. Further,
we define the notions of partial compliance and partial violation as well as total violation.

Definition 4 (Compliance of Pre-specified Process Model). Let S be a pre-specified process model
and let φ be a compliance rule (cf. Definition 1). Further, let QSS ⊆ Σ� be the set of all complete traces
producible on S; i.e., σ ∈ QSS represents a completed process instance. Then:

• S (totally) complies with φ, if and only if all complete traces σ being producible on S comply with φ;
i.e., ∀σ ∈ QSS : φ(σ).

• S partially complies with φ, if and only if there exists a complete trace σ being producible on S and
complying with φ; i.e., ∃σ ∈ QSS : φ(σ)

• S partially violates φ, if and only if there exists a complete trace σ being producible on S and violating
φ; i.e., ∃σ ∈ QSS : ¬φ(σ).

• S only partially complies with φ, if and only if S partially complies with φ as well as S partially
violates φ; i.e., ∃σ1, σ2 ∈ QSS : φ(σ1) ∧ ¬φ(σ2)

• S (totally) violates φ, if and only if all complete traces σ being producible on S violate the compliance
rule φ; i.e., ∀σ ∈ QSS : ¬φ(σ).

In case S totally complies with φ, for brevity we also use the phrase ”S complies with φ”. The same applies
if S totally violates φ. In this case we also say ”S violates φ”.

Example 6 illustrates the different notions.

8 Knuplesch, Reichert

Example 6 (Compliance of a Pre-specified Process Model). Reconsider the pre-specified process model Smed

from Figure 1 and the compliance rules from Table 1 and Fig. 4 respectively. Process model Smed (totally)
complies with compliance rules c2, c5, c6, and c7. It only partially complies with compliance rules c3 and
c4, while compliance rule c1 is (totally) violated.

One common way to perform a priori checking is the usage of model checking techniques [5]. These allow
for verifying models and systems against temporal formulas. In this context tools exist that provide efficient
implementations of model checking algorithms. Generally, one can distinguish between explicit model checking
and symbolic model checking . In the context of LTL, explicit model checking means to first create a state-based
automaton that represents the negated formula. Then, this automaton and the state space of the process model
are explored in combination. Symbolic model checking, in term, transforms both the process model and the
compliance rule into propositional logic expressions and then applies a satisfiability check. When applying model
checking to the verification of compliance rules not being modeled in terms of temporal logic (e.g., compliance
rules that are modeled based on CRGs), these rules first have to be transformed into temporal logic.

4 Compliance Monitoring

Checking business process compliance of a pre-specified process model a priori at build-time is not always
feasible, e.g., if the process model is too large or compliance rules are too complex or depend on run-time data.
Besides, loosely specified and dynamically evolving processes require support for ensuring compliance during
run-time as well. Hence, compliance monitoring is required that allows process engineers to control and monitor
compliance rules during the execution of single process instances. However, at the process instance level it is not
sufficient to only consider one snapshot, i.e. to state whether or not the process instance violates a particular
compliance rule at a certain point in time. On the one hand, the violation of a certain compliance rule can
often be cured later on when the process instance progresses. On the other hand, there are violations for which
no adequate continuation exists. Hence, Definition 5 not only distinguishes between process instances being
compliant and those violating a compliance rule, but also between curable and incurable violations of process
instances regarding an imposed compliance rule.

Definition 5 (Compliance and Curability of Process Instances). Let I be a process instance rep-
resented by its current trace σI . Further, the process model based on which I has been executed may not
be known. Finally, let φ be a compliance rule. Then:

• I complies with φ, if and only if σI complies with φ; i.e., φ(σI).

• I violates φ, if and only if holds σI violates φ; i.e., ¬φ(σI).

• I curably violates φ, if and only ifσI violates φ, but the execution of I can be continued in such a way
that the resulting trace complies with φ; i.e., ¬φ(σI) ∧ ∃τ ∈ Σ� : φ(σIτ).

• I incurably violates φ, if and only if σI violates φ and any continuation of I violates φ as well; i.e.,
¬φ(σI) ∧ ∀τ ∈ Σ� : ¬φ(σIτ).

Example 7 illustrates Definition 5.

Example 7 (Compliance and Curability of Process Instances). Consider the compliance rules c2, c3 and
c4 from Table 1 (see also Table 2 and Figure 4). Further, consider the traces σI1 and σI2 of the running
process instances I1 and I2 respectively (cf. Figure 5). Obviously, I1 violates c2, while it complies with
c3 and c4. Further, c2 is curably violated, since σI1 can be continued by executing activity Make decision.

Ensuring Business Process Compliance Along the Process Life Cycle 9

Finally, I2 complies with c2 and c3. However, I2 incurably violates c4 since no continuation of σI2 contains
the activity Inform about anesthesia preceding Schedule surgery.

� �

1 Admit�patient 1 Admit�patient
2 Perform�checkup 2 Perform�checkup
3 Examine�patient 3 Examine�patient
4 Inform�about�risks 4 Inform�about�risks

5 Make�decision
6 Schedule�surgery

I1 I2

Fig. 5: Snapshots of Instance Traces

In practice, it is not always feasible to only deploy process models being totally compliant; i.e., there may be
pre-specified process models that only partially comply with imposed compliance rules. As will be shown in
Example 8, instances of respective pre-specified process model need to be monitored at run-time to determine
whether or not a compliance violation can be cured in the following. According to this, Definition 6 distinguishes
between different levels of criticality of curable violations.

Definition 6 (Temporary and Permanent Compliance Violations). Let I = (S, σI) be a process
instance running on a process model S. Further, let QSS be the set of all complete traces producible on
S and φ be a compliance rule. Then:

• I temporarily violates φ, if and only if I currently violates φ, but any continuation on S will comply
with φ at least at one future point in time:

I curably violates φ ∧ ∀τ ∈ Σ� with σIτ ∈ QSS :
∃υ, ω ∈ Σ� with υω = τ ∧ φ(σIυ).

• I potentially violates φ temporarily, if and only if I currently violates φ and it holds: On the one hand,
I may be continued in a way such that it will comply with φ at least at one future point in time. On
the other hand, I may be also continued in a way such that it will never comply with φ again; i.e.,
I curably violates φ ∧ ∃τ1, τ2 ∈ Σ� : for σIτ1, σIτ2 ∈ QSS it holds:

(∃υ1, ω1 ∈ Σ� with υ1ω1 = τ1 : φ(σIυ1)) ∧ (∀υ2, ω2 ∈ Σ� with υ2ω2 = τ2 : ¬φ(σIυ2)).

• I permanently violates φ, if and only if I currently violates φ and any continuation on S always violates
φ; i.e.,

I curably violates φ ∧ ∀τ ∈ Σ� with σIτ ∈ QSS :
∀υ, ω ∈ Σ� with υω = τ : ¬φ(σIυ).

Example 8 applies Definition 6 to selected process instances.

Example 8 (Persistence of Compliance Violations). Reconsider the compliance rules c2, c3 and c4 from
Table 1 (see also Table 2 and Figure 4). Further consider the traces σI3 and σI4 from Figure 6. These
correspond to the running process instances I3 = (Smed, σI3) and I4 = (Smed, σI4), which are executed on
the pre-specified process model Smed from Figure 1.

• Obviously, I3 violates c2 and c3, while it complies with c4. Further, c2 is only temporarily violated by I3,
since its continuation on Smed will lead to the execution of Make decision (e.g., σI2 and σI4). However,
c3 is potentially temporarily violated, since Smed allows σI3 continuing with activity Inform about risks
(e.g., σI1 and σI2) or without activity Inform about risks (e.g. σI4).

10 Knuplesch, Reichert

• I4 violates c3, but complies with c2 and c4. Further, c3 is permanently violated by I4, since no contin-
uation of I4 on Smed will contain the required activity Inform about risks.

� �

1 Admit�patient 1 Admit�patient
2 Perform�checkup 2 Perform�checkup
3 Examine�patient 3 Examine�patient

4 Inform�about�anesthesia
5 Make�decision
6 Schedule�surgery

I3 I4

Fig. 6: Additional Snapshots of Process Instance Traces

5 A-posteriori Compliance Checking

Instead of ensuring compliance a priori (i.e., by checking pre-specified process models at build-time) or monitor-
ing it during processes execution, compliance may be also checked for completed process instances a-posteriori ;
e.g., to determine whether these completed instances comply with newly emerging regulations. Compliance of
completed process instances can be directly decided based on the definition of compliance rules (cf. Definition 1).

� � �

1 Admit�patient 1 Admit�patient 1 Admit�patient
2 Perform�checkup 2 Perform�checkup 2 Perform�checkup
3 Examine�patient 3 Examine�patient 3 Examine�patient
4 Inform�about�risks 4 Inform�about�risks 4 Inform�about�anesthesia

I5 I6 I7

5 Make�decision 5 Make�decision 5 Make�decision
6 Schedule�surgery 6 Write�discharge�letter 6 Schedule�surgery
7 Check�patient�recod 7 Check�patient�recod
8 Admit�patient 8 Admit�patient
9 Send�patient�to�surgica�suite 9 Send�patient�to�surgica�suite
10 Perform�surgery�+ 10 Prepare�patient
11 Prepare�patient 11 Perform�surgery�+
12 Transport�patient�to�ward 12 Transport�patient�to�ward
13 Create�surgery�report 13 Provide�postsurgical�care
14 Make�lab�test 14 Make�lab�test
15 Provide�postsurgical�care 15 Create�surgery�report
16 Discharge�patient 16 Discharge�patient
17 Write�discharge�letter 17 Write�discharge�letter

Fig. 7: Execution Traces of Completed Process Instances

Example 9 illustrates a-posteriori compliance checking.

Example 9 (Compliance of Process Execution Logs). Consider the compliance rules c1, c2, c3, c4, c5, c6,
and c7 from Table 1 (see also Table 2 and Figure 4). Further consider the execution traces σI5 , σI6 and
σI7 from Figure 7, which correspond to the completed process instances I5, I6 and I7. I5 violates c1 and
c4, and complies with c2, c5, c6, and c7. Further, I6 complies with ci, i = 1 . . . 7 and I7 violates c1 and c3,
but complies with c2, c4, c5, c6, and c7.

Similar to a-priori compliance checking, a-posteriori compliance checking can be realized based on techniques
that build on model checking. The approach described in [7] transforms LTL-based compliance rules into state-
based automata. Taking an execution log as input, these automata allow deciding whether a completed process
instance complies with the original rule or violates it.

Ensuring Business Process Compliance Along the Process Life Cycle 11

6 Effects of Process Changes on Compliance

As discussed in [8, 9], pre-specified process models as well as process instances running on them may have
to be changed and adapted. Obviously, such changes can affect compliance of the process models and process
instances, respectively, with the imposed compliance rules. Depending on theses effects, we define compliance
of changes with a given compliance rule (cf. Definition 7).

Definition 7 (Compliance of Changes). Let S be a pre-specified process model and let I = (S, σI) be
a related process instance. Further, let Δ be a change that correctly transforms the pre-specified process
model S into another pre-specified process model S′. Finally, let I = (S, σI) be correctly migratable to S′,
i.e., I = (S′, σI). Then:

• The application of Δ to S meets compliance rule φ, if and only if the application of Δ to S does not
weaken the compliance of S with φ; i.e.,

– S complies with φ⇒ S′ complies with φ.
– S partially complies with φ⇒ S′ partially complies with φ.

• The application of Δ to I = (S, σI) meets compliance rule φ, if and only if the application of Δ to
process instance I does not weaken the compliance of I with φ; i.e.,

– I = (S, σI) complies with φ⇒ (S′, σI) complies with φ.
– I = (S, σI) temporarily violates φ⇒ ((S′, σI) temporarily violates φ ∨ (S′, σI) complies with φ).
– I = (S, σI) potentially violates φ temporarily ⇒ ((S′, σI) potentially violates φ temporarily

∨(S′, σI) temporarily violates φ ∨ (S′, σI) complies with φ).

O
ut

pa
tie

nt
 D

ep
ar

tm
en

t
d

M
TA

P
hy

si
ci

an
ys

ic
ia

n

Admit
patient

Perform
checkup

Examine
patient

Inform about
risks

Inform about
anesthesia

Make
decision

Check
patient record

Schedule
surgery

Write
discharge letter

Write
discharge letter

Discharge
patient

patient referral
to hospital

surgery
ok

�1: delete (S, Schedule surgery)

�2: delete (S, inform about risks)

Fig. 8: Changes Potentially Affecting the Compliance of Process Model Smed

� �

1 Admit�patient 1 Admit�patient
2 Perform�checkup 2 Perform�checkup
3 Examine�patient 3 Examine�patient

4 Inform�about�anesthesia

I8 I9

Fig. 9: Further Examples for Snapshots of Process Instance Traces

When applying Definition 7 in a straightforward manner, one would have to re-check compliance of a process
model with all defined compliance rules whenever changing this model. This might become necessary in the
context of ad-hoc adaptations of single process instances or changes of a pre-specified process models solely at
the process type level (i.e., without propagating the type change to already running process instances). However,
re-checking business compliance for large collections of running process instances might be too expensive. More
precisely, for each of these hundreds up to thousands of process instances it has to be determined whether or
not it still meets the imposed compliance rules when migrating the process instance to the new process model

12 Knuplesch, Reichert

version. To cope with this challenge, changes and compliance rules have to be analyzed (e.g., by considering the
affected activities) in order to restrict the set of compliance rules to be re-checked.

Example 10 (Effects of Changes on Process Model Compliance). Take compliance rules c4 and c5 from
Table 1 (see also Table 2 and Figure 4) and consider change Δ1 of the pre-specified process model Smed as
depicted in Figure 8. Obviously, Δ1 meets c4. While S only partially complies with c4, S′ totally complies
with this rule. By contrast, Δ1 violates c5 since S totally complies with c5, but S′ only partially complies
with this rule.

Example 11 (Effects of Changes on Process Instance Compliance). Consider now compliance rule c3 from
Table 1 (see also Table 2 and Figure 4) and change Δ2 from Figure 8 that transforms Smed into S′

med. Fur-
ther, consider the process instances I8 = (Smed, σI8) and I9 = (Smed, σI9) from Figure 9 that both depend
on the pre-specified process model Smed from Figure 1. Regarding I8, Δ2 violates c3: I8 = (Smed, σI8) po-
tentially violates c3 temporarily, whereas (S′

med, σI8) permanently violates this rule. However, regarding I9,
Δ2 meets c3 since I9 = (Smed, σI9) permanently violates c3 which also applies to (S′

med, σI9) permanently.

7 User Perspective

This section gives an idea how compliance checking looks like from the perspective of the user. Currently, only
few tools exist that allow ensuring business process compliance at the process type or the process instance
level. One of them is the SeaFlows Toolset [10], which provides a comprehensive and extensible framework for
checking business compliance of pre-specified process models. For this purpose, the SeaFlows Toolset provides
a user-friendly environment. For modeling compliance rules SeaFlows uses CRGs as presented in Section 2.

Fig. 10: Modeling Compliance Rules with the SeaFlows Graphical Editor

The SeaFlows Toolset allows enriching process models with these rules and checking for compliance with them.
Furthermore, compliance checking considers data as well as efficiency issues by applying a number of abstraction
strategies. Finally, violations of compliance rules are illustrated by means of a counter example (cf. Figure 11).
At the technical level the applied compliance checking approach uses the model checker SAL [11].
Additionally, a structural compliance checking approach is delivered. It first derives structural criteria from
compliance rules. Then it applies those criteria to check business process compliance of cycle-free process models
(cf. Figure 12).

Ensuring Business Process Compliance Along the Process Life Cycle 13

original
process graph

counterexample as
process graph

counterexample
as process log

data-aware
compliance rules

visualization of the
counterexample’s steps

Fig. 11: Compliance Checking with the SeaFlows Toolset

Fig. 12: Structural Compliance Checking with the SeaFlows Toolset

8 Existing Approaches Enabling Business Process Compliance

Existing approaches enabling business process compliance follow different paradigms to model compliance rules.
In first position there are approaches using temporal logic. For example, the work discussed in [12] applies
LTL and the one presented in [13] applies CTL for modeling compliance rules. Further, these approaches apply
model checking for enabling a priori compliance checking. Other logic-based approaches consider the modalities
of compliance rules (e.g., obligations or permissions) and use deontic logic as formal basis [14, 15]. As discussed
in Section 2, however, logic expressions are less comprehensible to end users. To improve this situation, a
pattern-based notation is suggested by Dwyer et al. in [16]. Finally, several approaches use graphical notations
(including CRGs) [6, 17, 12].
Model checking is the most common technique for verifying compliance rules (e.g. [13, 17, 12, 18]). However,
model checking depends on the exploration of the state space of pre-specified process models. In particular, the
state space explosion problem constitutes a big obstacle for the practical use of model checking techniques. To
tackle this challenge, techniques like graph reduction and sequentialization of parallel flows as well as predicate
abstraction are applied [12, 17, 19]. Besides model checking, there exist other techniques ensuring business
process compliance a priori. For cycle-free process models, for instance, [20] and [21] provide efficient algorithms.

14 Knuplesch, Reichert

Generally, compliance rules should not be restricted to the behavior perspective, but be applicable to other
perspectives of a PAIS as well (e.g., the information or time perspectives). Compliance checking of process models
having state-based data objects (i.e., enumerations), for instance, is suggested by Awad et al. [22]. Further, [19]
enables data-aware compliance checking for larger data types (e.g., integers or reals). The verification of cycle-
free process models against temporal compliance rules is addressed by Eder et al. [23], while [18] considers both
the information and the time perspective.

9 Summary

This report dealt with issues related to business process compliance. Compliance can be checked a-priori for pre-
specified process models as well as for running process instances or completed ones (i.e., execution logs). For each
of these artifacts it can be verified whether or not it complies with compliance rules imposed from regulations,
laws and guidelines. This report presented two ways for modeling compliance rules: LTL and CRGs. It first
discussed how to apply a-priori compliance checking to pre-specified process models and then gave insights into
compliance monitoring and different kinds of compliance violations including compliance checking. Following
this, it discussed the potential impact of process changes (at both the type and the instance level) on business
process compliance. Finally, the report discussed the user perspective as well as recent approaches enabling
business process compliance.

References

1. Weske, M.: Workflow management systems: Formal foundation, conceptual design, implementation aspects. Habilitation Thesis,
University of Münster, Germany. Springer (2007)

2. van der Aalst, W.M.P.: The application of petri nets to workflow management. Journal of Circuits, Systems, and Computers
8(1) (1998) 21–66

3. Weber, B., Reichert, M., Rinderle-Ma, S., Wild, W.: Providing integrated life cycle support in process-aware information
systems. Int. Journal of Cooperative Information Systems (IJCIS) 18(1) (2009) 115–165

4. Reichert, M., Dadam, P.: ADEPTflex – supporting dynamic changes of workflows without losing control. Journal of Intelligent
Information Systems, Special Issue on Workflow Management Systems 10(2) (1998) 93–129

5. Huth, M., Ryan, M.: Logic in Computer Science: Modelling and reasoning about systems. Cambridge University Press (2004)
6. Ly, L.T., Rinderle-Ma, S., Dadam, P.: Design and verification of instantiable compliance rule graphs in process-aware informa-

tion systems. In: Proc. 22nd Int. Conf. Advanced Systems Engineering (CAiSE’10), Springer (2010) 9–23
7. van der Aalst, W.M.P., de Beer, H., van Dongen, B.: Process mining and verification of properties: An approach based on

temporal logic. In: Proc. 13th Int. Conf. Coop. Inf. Systems (CoopIS’05), Springer (2005) 130–147
8. Weber, B., Sadiq, S., Reichert, M.: Beyond rigidity – dynamic process lifecycle support. Computer Science – Research and

Development 23(2) (2009) 47–65
9. Reichert, M., Rinderle-Ma, S., Dadam, P.: Flexibility in process-aware information systems. Transactions on Petri Nets and

Other Models of Concurrency II 2 (2009) 115–135
10. Ly, L., Knuplesch, D., Rinderle-Ma, S., Göser, K., Pfeifer, H., Reichert, M., Dadam, P.: Seaflows toolset – compliance verification

made easy for process-aware information systems. In: Proc. CAISE’10 Forum - Information Systems Evolution. (2011) 76–91
11. Bensalem, S., et al.: An overview of SAL. In: Proc. of the 5th NASA Langley Formal Methods Workshop, NASA Langley

Research Center (2000) 187–196

12. Awad, A., Decker, G., Weske, M.: Efficient compliance checking using BPMN-Q and temporal logic. In: Proc. 6th Int. Conf.
Business Process Management (BPM’08), Springer (2008) 326–341

13. Ghose, A.K., Koliadis, G.: Auditing business process compliance. In: Proc. 5th Int. Conf. Service-Oriented Computing

(ICSOC’07), Springer (2007) 169–180
14. Alberti, M., et al.: Expressing and verifying business contracts with abductive logic programming. In: Proc. 2nd Int. Conf.

Normative Multi-agent Systems (NorMAS’07). Dagstuhl Seminar Proceedings (2007)

15. Goedertier, S., Vanthienen, J.: Designing compliant business processes with obligations and permissions. In: Proc. BPM’06
Workshops, Springer (2006) 5–14

16. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property specification patterns for finite-state verification. In: Proc. 2nd Workshop
Formal Methods in Software Practice (FMSP’98), ACM (1998)

17. Liu, Y., Müller, S., Xu, K.: A static compliance-checking framework for business process models. IBM Systems Journal 46(2)

(2007) 335–261

18. Kokash, N., Krause, C., de Vink, E.: Time and data aware analysis of graphical service models. In: Proc. 8th Int. Conf.
Software Engineering and Formal Methods (SEFM’10), IEEE Computer Society (2010)

19. Knuplesch, D., Ly, L., Rinderle-Ma, S., Pfeifer, H., Dadam, P.: On enabling data-aware compliance checking of business process

models. In: Proc. 29th Int. Conf. Conceptual Modeling (ER’2010), Springer (2010)
20. Governatori, G., Milosevic, Z., Sadiq, S.: Compliance checking between business processes and business contracts. In: Proc.

10th Int. Enterprise Distributed Object Computing Conf. (EDOC’06), IEEE Computer Society (2006) 221–232

Ensuring Business Process Compliance Along the Process Life Cycle 15

21. Weber, I., Hoffmann, J., Mendling, J.: Semantic business process validation. In: Proc. 3rd Int. workshop on Semantic Business
Process Management (SBPM’08). (2008)

22. Awad, A., Weidlich, M., Weske, M.: Specification, verification and explanation of violation for dataaware compliance rules. In:
Proc. of 7th Int. Conf. Service Oriented Computing (ICSOC’09), Springer (2009) 500–515

23. Eder, J., Tahamtan, A.: Temporal conformance of federated choreographies. In: Proc. 19th Int. Conf. Database and Expert
Sys. App. (DEXA’08), Springer (2008) 668–675

