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Abstract

IT support for distributed and collaborative workflows as well as related interactions between business partners are
becoming increasingly important. For modeling such partner interactions as flow of message exchanges, different top-
down approaches, covered under the term interaction modeling, are provided. Like for workflow models, correctness
constitutes a fundamental challenge for interaction models; e.g., to ensure the boundedness and absence of deadlocks
and lifelocks. Due to their distributed execution, in addition, interaction models should be message-deterministic
and realizable, i.e., the same conversation (i.e. sequence of messages) should always lead to the same result, and
it should be ensured that partners always have enough information about the messages they must or may send in a
given context. So far, most existing approaches have addressed correctness of interaction models without explicitly
considering the data exchanged through messages and used for routing decisions. However, data support is crucial
for collaborative workflows and interaction models respectively. This technical report enriches interaction models
with the data perspective. In particular, it defines the behavior of data-aware interaction models based on Data-
Aware Interaction Nets, which use elements of both Interaction Petri Nets and Workflow Nets with Data. Finally,
formal correctness criteria for Data-Aware Interaction Nets are derived, guaranteeing the boundedness and absence
of deadlocks and lifelocks, and ensuring message-determinism as well as realizability.
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I. INTRODUCTION

Workflow management is of utmost importance for companies that want to efficiently handle their workflows as
well as their interactions with partners and customers [1]. Despite the varying issues relevant for the IT support of
distributed and collaborative workflows [2], common aspects to be considered include the support of appropriate
modeling techniques as well as the definition of a formal execution semantics, ensuring proper and correct partner
interactions (i.e., message exchanges).

Workflow management methods and techniques tackling these challenges consider a choreography as a
specification of message exchanges between the partners of a collaborative workflow. Respective approaches provide
a global view on distributed workflows and support partners in correctly defining their private processes (partner
processes for short). The latter can be transformed into distributed, executable workflows. When executing these
workflows, their interplay is coordinated in terms of a conversation (i.e., a sequence of exchanged messages) that
follows the global behavior specified by the choreography.

Currently, there exist two different paradigms for modeling choreographies: interconnection modeling and
interaction modeling. Interconnection modeling uses message exchange as link between partner processes or public
views on them. In particular, this paradigm does not allow modeling the message exchange separately from the
partner processes. Hence, it is considered as a bottom-up approach. Approaches enabling interconnection modeling
include BPMN Collaboration Diagram [3], BPEL4Chor [4], and Compositions of Open Nets [5]. By contrast,
interaction modeling provides a top-down approach. An Interaction Model specifies the flow of message exchanges



without having any knowledge about the partner processes. Moreover, the models of the partner processes are
created taking the interaction model into account. Nevertheless, common interaction models use the same patterns
as workflow models (e.g. parallel and conditional branchings), but instead of tasks they refer to the messages
exchanged. Approaches enabling interaction modeling include iBPMN [6], BPMN Choreography Diagrams [3],
Service Interaction Patterns [7], and WSCDL [8].

This technical report focuses on the correctness of interaction models. Related issues discussed in the literature
include boundedness and absence of deadlocks and lifelocks, as well as the realizability of interaction models
[5], [9]-[11]. Realizability postulates that partners always can compute which messages they must or may send
in a given execution context. Fig. 1 (1) outlines a simple example of a non-realizable choreography with four
partners A, B,C, and D, and two messages m; and mo. This interaction model specifies that after sending
message m; from A to B, message mg must be sent from C' to D. Obviously, only A or B knows when
C must send message meo, but C does not have this knowledge. Consequently, this interaction model is not
realizable. A necessary precondition for realizability is message-deterministic behavior, i.e. the same conversation
(i.e. sequence of messages) should always lead to the same result. An example of an interaction model, which
is not message-deterministic, is shown in Fig. 1 (2); this interaction model comprises partners A, B, and C, and
messages mi,ma,ms, and my. After sending the first message mj, either the upper or the bottom branch shall be
chosen. In any case, the next message mo must be sent from B to C. Depending on the branch chosen, however,
then C either must send mg3 to B or my4 to A. From the perspective of C, it cannot be determined, which of
the two interpretations shall be applied. By contrast, B knows the chosen branch (e.g., the upper one). Hence, C
might send my4 to A, while B waits for ms, or vice versa.

A property similar to realizability is clear termination. It requires that a partner always can compute, whether
he will be sender or receiver of any messages in the sequel. An example of an interaction model, which is not
clearly terminating, is shown in Fig. 1 (3). This interaction model comprises partners A, B, and C', and messages
mi,ma, ma, and my. After sending the first message m; from A to B, B can either send message ms to A or
message my to C. When choosing the first option (i.e. B sends mqy to A), A must send mg to C afterwards.
In turn, when choosing the second option (i.e. B sends my4 to (), the execution is terminated, although A may
still wait for the arrival of message mo. Note, that from the perspective of A nothing has changed since m was sent.
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Fig. 1. Violating realizability, message-determinism, clear termination [9]

Existing approaches for interaction modeling do not adequately support the data perspective. Either related
execution semantics completely ignore the data perspective or there is a lack of appropriate correctness criteria,
especially if routing decisions are based on message data.

This technical report deals with fundamental correctness issues when making interaction models data-aware.
Section II provides an example from the healthcare domain to emphasize the need of data-awareness in interaction
models. Section II further discusses the challenges to be tackled when considering the data perspective. Section III
then introduces our formal framework for data-aware interaction modeling. First, an interaction meta-model is
provided in terms of the Data-Aware Choreography (DAChor). The behavior of a DAChor is described by a
transformation to Data-Aware Interaction Nets (DAI Nets). These combine Interaction Petri Nets [9] and Workflow



Nets with Data [12]. Based on Data-Aware Interaction Nets, the set of allowed conversations (i.e., message
exchanges) is derived and used to introduce formal correctness criteria for DAI Nets and DAChor respectively. These
criteria guarantee for the boundedness and absence of deadlocks and lifelocks, and ensure message-determinism,
realizability, and clear termination. Section IV discusses related work and Section V concludes with a summary
and outlook.

II. EXAMPLE, CHALLENGES, CONTRIBUTION

This section introduces a simplified real-world scenario, which we elaborated in the context of case studies
conducted in the healthcare domain. These case studies highlighted the relevance of the data perspective in interaction
models. Thus, the scenario we select emphasizes the challenges arising from the support of data-awareness in
interaction models. It describes the transport of a patient to and from a unit performing a Positron Emission
Tomography (PET) scan. A PET scan is a kind of nuclear medicine imaging not performed by the respective
hospital itself in our scenario. Thus, if a PET scan is ordered for a patient, patient transportation to the respective
provider is required. In this context, the hospital must inform the provider of the PET scan about the patient’s
status, such that he can decide on the preparations required. Furthermore, we require a patient to be examined just
before the transport to exclude potential risks (e.g., the patient being in a critical condition).

The scenario involves three partners, i.e., the Hospital responsible for the patient and ordering the PET scan,
the Transportation (Transp.) Provider transporting the patient, and the PET provider performing
the PET scan. The interaction starts with the Hospital requesting the PET scan (Request PET). In the context
of this request, the Hospital informs the PET Provider about the status of the patient. In turn, the PET
provider confirms the time for which the scan is scheduled (Confirm), and then requests the Transp.
Provider to perform the transport (Request Trans.).

« If the patient is in a critical condition, the Transp. Provider requests the Hospital to examine him
to check whether he is transportable (Request Exam.). Based on the Result of this examination, the
Hospital informs the Transp. Provider on whether to continue or abort the interaction.

« If the interaction is continued or the patient is not in a critical condition, Transp. Provider informs
the PET provider after picking up the patient and arriving at the PET unit (Arrival). After the PET
scan is performed, the PET provider requests retransport of the Transp. Provider (Retransport).
Finally, the Transp. Provider informs the Hospital about the return of the patient (Return).

Obviously, properly modeling the interactions of this scenario requires support for routing decisions based on the
data of the messages exchanged. More precisely, in the given scenario, there is a decision referring to data of the
first message exchanged (i.e. whether or not the patient is in a critical condition). Another decision refers to the
message sent by the hospital and indicating whether the request shall be canceled. Hence, we use a notation based
on BPMN 2.0 [3] and iBPMN [9], but enrich it with so-called virtfual data objects. We denote this notation as
Data-Aware Choreography (DAChor) and use it to model our scenario in Fig. 2. Virtual data objects have a data
domain and can be used as variables when defining conditions for routing decisions. However, these virtual data
objects are not used for modeling information flow. Thus, the data assignment relation denotes which data of an
interaction is assigned to any virtual data object. Note that such a data assignment relation can only lead from
an interaction to a virtual data object, but not vice versa. Furthermore, an interaction is assigned to a message
class denoting the message type. From the message class, the sender, receivers, and data domain are inherited (e.g.,
boolean). Finally, when executing a choreography, messages of the related message class correspond to interactions.

Having a closer look at our scenario, one can recognize that it neither ensures realizability nor clear termination.
If the Hospital requests canceling the PET scan, the PET provider is not informed accordingly and hence
may still wait for the message; i.e., no clear termination is ensured. However, if Alternative 2 (cf. Fig. 2) is applied,
the PET provider will be informed and clear termination can be ensured. In turn, realizability is violated for the
given interaction model, since Transp. Provider does not know whether the patient is in a critical condition.
Thus, Transp. Provider cannot determine whether an examination must be requested. To ensure realizability,
it is not sufficient to only check whether this information was directly sent to Transp. Provider. Consider
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Fig. 2. Patient transportation scenario as DAChor

Alternative 1, which ensures realizability by also sending the confirmation to Transp. Provider, if the patient
is in a critical condition. Obviously, implicit knowledge of Transp. Provider about the value of virtual data
object Status is sufficient to ensure realizability. This makes the definition of proper correctness criteria for
data-aware interaction models Section III very challenging.

Before defining correctness criteria for DAChors, their behavior has to be formalized. In [9], Decker et al. define
the behavior of iBPMN choreographies based on their transformation to Interaction Petri Nets (IP Nets). However,
IP Nets are unaware of data. This raises the challenge to first enrich IP Nets as well as their behavior with data,
i.e., to design Data-Aware Interaction Nets (DAI Nets). Following this, an appropriate transformation is presented.

The main contribution of this technical report is to introduce a formal framework for data-aware interaction models
putting emphasis on correctness. Especially, this framework comprises specific correctness criteria for interaction
models (e.g. realizability, clear termination). Note, that the latter exceed traditional correctness and soundness
criteria that are known from workflows and interconnection models [5], [13], [14]. Further contributions include
the introduction of DAChors and DAI Nets as well as the transformation from DAChors to DAI Nets with well
defined behavior.

III. FORMAL FRAMEWORK

This section introduces our formal framework for ensuring correctness of data-aware interaction models. First,
the scope of an interaction model is described as interaction domain and in terms of messages (cf. Def. 1 and
2 in Section III-A). Second, Data-Aware Choreographies (DAChors) are introduced as formal meta-model for
data-aware interaction modeling (cf. Def. 3 in Section III-B). In Section III-D, the semantics of DAChors is
described based on their transformation to Data-Aware Interaction Nets (DAI Nets). DAI Nets combine Interaction
Petri Nets (IP Nets) [9] and Workflow Nets with Data (WFD Nets) [12] (cf. Def. 5 in Section III-C). Their
behavior is described in terms of markings and execution traces (cf. Def. 8—10 in Section III-E). Def. 12 introduces
conversations representing the observable parts of an execution trace (i.e., exchanged messages). Finally, partner
views are defined (cf. Def. 14). Based on traces, conversations, and views, we then introduce correctness criteria
for DAI Nets and DAChors respectively (cf. Def. 11, 13, and 15). Fig. 3 provides an overview of the main
elements of our formal framework and their relations.
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Fig. 3.

A. Interaction Domains and Messages

This section defines the basic elements of data-aware interaction modeling in terms of an interaction domain. The
latter contains roles to differentiate the partners as well as message classes and related data domains. Furthermore,

the notion of message (cf. Def. 1 and 2 and Example 1).

Overview of our formal framework

Definition 1 (Interaction Domain).
An interaction domain is a tuple T = (R, D, C,dom¢, sc,rc, €), with

R is a set of roles,

D is a set of data domains; each D €D represents a finite set of values,

C is a set of message

classes,

domg : C' = D is a function assigning to each message class a data domain,
so : C — R assigns the sender to each message class,
ro s C — 27 assigns the set of receivers to each message class,

€ is the empty value.

Further, we define Q. :={e} U U D as the set of all values.
DeD




Based on Def. 1, Def. 2 introduces the notion of message. A message constitutes an instance of a message class.
Furthermore, we introduce several sets of messages.

Definition 2 (Messages).
Let T =(R,D,C,dom¢,sc,rc,€) be an interaction domain. Then: A message in I is a tuple = (c,x) € C x Q,
with
e cc C is the corresponding message class, and
e x € domc(c) is the message content transferred.
Furthermore, we define:
o Xo:={(c,2) eCxQz | ¢ =c A zedome(c')} as set of all messages corresponding to message class c € C,
o 27 :=Ueec Xc as set of all messages corresponding to interaction domain Z,
e Y, :={(c,v) € Xz|sc(c) = R} as set of all messages sent by role R € R,
e Yo :={(c,v) eXz|Rerc(c)} as set of all messages received by role R,
e Xp:=Xp,UX g as set of all messages corresponding to role R, i.e. sent or received by R

Example 1 (Basic Notions).
Consider the interaction model of the patient transportation scenario from Fig. 2. Its interaction domain is
Z=(R,D,C,dom¢c,sc,rc,€) with:

R = {Hospital,PET Provider, Transp. Provider}

D = {D.={€}, Dstatus = {uncritical, critical }, Dorqer = {abort, continue}, Dpate = {1.1.1900, .. .,31.12.2099}

C = {Reguest PET,Confirmation,Request Trans.,Request Exam.,Result,Arrival,Retransport,
Return,Confirmation+,Cancel PET}

sc(Request PET) = Hospital rc(Request PET) = {PET provider}
sc(Confirmation) = PET provider ro(Confirmation) = {Hospital}
sc(Request Trans.) = PET provider rc(Request Trans.) = {Transp. Provider}
sc(Request Exam.) = Transp. Provider | r¢(Request Exam.) = {Hospital}
sc(Result) = Hospital rc(Result) = {Transp. Provider}
sc(Arrival) = Transp. Provider | rc(Arrival) = {PET provider}
sc(Retransport) = PET provider rc(Retransport) = {Transp. Provider}
sc(Return) = Transp. Provider | r¢(Return) = {Hospital}
sc(Confirmation+) = PET provider rc(Confirmation+) = {Hospital,

Transp. Provider}

sc(Cancel PET) {PET provider}

Transp. Provider | rc(Cancel PET)

domg(Request PET) =  Dstatus domg(Confirmation) = Dpate
domc(Request Trans.) = Dpate domc(Request Exam.) = D.
domg(Result) = Dorder domg(Arrival) = D,
domg(Retransport) = D, domg(Return) = D,
domg(Confirmation+) = Dpate domg(Cancel PET) = D,

Yz ={ (Request PET,uncritical),(Request PET,critical),(Result,abort),(Result,continue),
(Request Exam.,e),(Arrival,e),(Confirmation,1.1.1900),...,(Confirmation,31.12.2099),
(Confirmation+,1.1.1900),...,(Confirmation+,31.12.2099), (Retransport,e),(Return,e),
(Request Trans.,1.1.1900),...,(Request Trans.,31.12.2099),(Cancel PET,¢)}




B. Data-Aware Choreography

Based on the interaction domain from Def. 1, we define the notion of data-aware choreography (DAChor).
DAChor enriches BPMN choreography models with virtual data objects, a data assignment relation, and guards.

Definition 3 (Data-Aware Choreography; DAChor).
Let T = (R,D,C,dom¢, sc,rc,€) be an interaction domain. Then: A Data-Aware Choreography (DAChor) over
T is a tuple DAC = (N, 1,G,es, E.,G3, GV, G5, ,Ge,GY, V., class, =, ->, domy, grd), with
o N is the set of nodes being the disjoint conjunction of the set of interactions I and the set of gateways and
events G. In turn, the latter is the disjoint conjunction of the start event {es}, the set of end events E., the set
of AND-splits G7, the set of AND-mergers G, the set of data-based XOR-splits G°,,, the set of event-based
XOR-splits G, and the set of XOR-mergers G,
o V is the set of virtual data objects,
e class: I — C assigns a message class to each interaction,
e >C (N -E.)x (N —{es}) is the interaction flow relation,
o >C I xV is the data assignment relation,
e domy :V — D is a function assigning a domain to each virtual data object,
e grd: (=) — Gy is a function assigning a guard to each interaction flow.

The set of guards Gy is defined as the set of propositional logic formulas over propositions of the form v = s
or the form v € {s1, $9,...,8,}. Thereby, v € V' is a virtual data object and s, s1, 2, ..., S, € domy (v) are values
of the related data domain. If a guard g € Gy, uses a virtual data object v € V, we denote this as v ~ g. Note that a
guard can be constantly true. In this case, we omit it in the graphical representation of the DAChor (cf. Fig 2).
In the following, we introduce the well-formedness of DAChors. Example 2 then provides a formal description of
our scenario from Fig. 2.

Definition 4 (Well-Formed DAChor).
A DAChor is well-formed, iff the following properties hold:
e the start event, each interaction, and each merge node have exactly one successor, i.e.,
Vne{es}UIUGT UG :[{n' e Njn—>n'}| =1
e each split node has at least one successor, i.e.,
Vg* € GLU Gl UGS, : [{n e Nlg* > n}[>1
o each end event, each interaction, and each split node have exactly one predecessor, i.e.,
Vne B, uluGiUGy UG, :|{n" e Nn' > n}|=1
e each merge node has at least one predecessor, i.e.,
Vg" e GTUGY :|{neNn—> g™} >1
e each event-based XOR-split is solely followed by interactions, i.e.,
Vgex € Gex i {n e N|g;, > n}cl
o guards of interaction flows are constantly true unless the source of an interaction flow
is a data-based XOR-split, i.e.,
grd ((ni,n2)) # true < ny € G5,
e the data of an interaction is solely assigned to variables of the same data domain, i.e.,
Vie[NveV:i->v = domc(class(i)) = domy (v).
e there is no cycle solely consisting of gateways, i.e.,
390,91,---gn € G go = g1 > - = gn = Go-




Example 2 (DAChor).
Consider the scenario from Fig. 2. Basing its interaction domain I (cf. Example 1) we can describe the given
scenario as DAChor DAC = (N,1,G, e, E.,G,G7, G5, G, G, V., class, =, ->,domy, grd):

ex?

I={i,...,ig}, Ec = {e},e2},V = {Status Order}
Gfix = {gd><7gdx} Gm = {gx } Gs = = Gix =

->={(i1, Status), (i5, Order)}

= {(es’il)’(i1’i2)’(i2ﬁi3)a(i37 >1<) (gdx’7'4) (gd><7gx) (14715) (257gd><) (gdx’ 1) (gdx7gx) (gx 716a)a
(i67i7)7(i77i8)7(7;8762)}

class(iy) = Request PET class(iz) = Confirmation | class(iz) = Request Trans.
class(is) = Request Exam. | class(is) = Result class(ig) = Arrival
class(iz) = Retransport class(is) = Return

domy (Status) = Dgatus domy (Order) = Doyrder

grd ((gdx,u)) = Status = critical | grd ((gdx,gX )) = Status = uncritical

Order = abort grd ((gdX , gy )) Order = continue

grd((gdw ))

C. Data-Aware Interaction Net

We introduce the notion of Data-Aware Interaction Net (DAI Net). It combines IP Nets [9] and WFD Nets [12]:
Hence, the main elements of a DAI Net are places and transitions. To add data, these elements are enriched with
variables and guards on transitions as known from WFD Nets. Furthermore, DAI Nets allow assigning message
classes to transitions. Like in IP Nets, respective transitions are denoted as interaction transitions. Finally, all other
transitions are called silent transitions.

Definition 5 (Data-Aware Interaction Net; DAI Net).
Let T =(R,D,C,domc, sc,rc,€) be an interaction domain. Then, a Data-Aware Interaction Net (DAI Net) over
T is a tuple # = (P, pin, Po, Pi, T, Ts,T1,V, class, —», ->,domy, grd), where
o P is the set of places; P can be partitioned into the initial place p;,, the set of ordinary places P,, and the
set of final places Py;,
o T is the set of transitions; T' can be partitioned into the sets of silent transitions Ts and the set of interaction
transitions 17,
o V is the set of variables,
e class:Tr — C is a function assigning a message class to each interaction transition,
o >C((P-"Pys)xT)u(T x (P —-{pin})) is the flow relation,
e ->CT7 xV is the data assignment relation. It expresses that the data of an interaction transition is assigned
to the related variable,
e domy :V — D is a function assigning a data domain to each variable,
e grd:T — Gy is a function assigning a guard to each interaction flow relation.

Further, we define
o Yy :=Uier, Yclass(i) as the set of all messages corresponding to #
P_’t {p € Plp — t} as the set of all places preceding t
:= {p € P|t > p} as the set of all places succeeding t
. P**’lt ={pePlp+t A t+p} as the set of the faraway places of t




As below Def. 3, the set of guards Gy is defined the set of propositional logic formulas over propositions of the
form v = s or the form v € {s1, s2,...,8,}. Thereby, v € V' is a variable and s, s1, S2, ..., S, € domy (v) are values
of the related data domain. If a guard g € Gy uses a variable v € V, we denote this as v ~ g. Note that a guard can
be constantly frue. In this case, we omit it in the graphical representation of the DAI Net (cf. Fig 4).

In the following, we introduce the well-formedness of DAI Nets. Then, we introduce a mapping from DAChor to
DAI Nets and show that this mapping preserves the property of well-formedness.

Definition 6 (Well-Formed DAI Net).
A DAI Net is well-formed, iff the following properties hold:
e each transition has at least one preceding and one succeeding place, i.e.,
VteT :3dp1,p2 e P:p; >t — pa
o the content of an interaction transition is solely assigned to variables of the same data domain, i.e.,
Vt,eTr,VoeV :t;->v = domg(class(t;)) = domy (v).
e there exists no cycle solely consisting of places and silent transitions, i.e.,
Bpo,p1,...pn € Pitot1,.. . tn € Ts :po = to > p1 = t1 >+ = pp =t~ po.

D. Mapping DAChors to DAI Nets

In Section III-C, we introduced DAI Nets to define the behavior of DAChors. Based on this we can now define a
mapping from data-aware choreographies to DAI Nets. This mapping is based on the approach proposed by Decker
et al. [9] who define the behavior of iBPMN Choreographies through their transformation to IP Nets.

Definition 7 (Mapping DAChors to DAI Nets).
Let DAC = (N,I,G,es,E.,G3, GV, Gy, G, GY, V, class, =, ->, domy, grd) be a DAChor (cf. Def. 3). Then,

DAC can be mapped to a DAI Net defined as # := (P, pm,Po,Pfl,T Ts,T71,V,class',—',->' domy, grd"), with

P = APy ) |(n1,n2) €= Anp ¢ GELY mteractlon Sflow
Pin ‘= D(e,,n) € Pywhereby e > ne N start event
B = eE.}cP end events
Py = P-({pin} v Pyp)
T, = {tg.l9+ € GLUGT} AND gateways
T3 = {t{,: n)|gi eGyx AneN A g —>n} data-based XOR-split gateways
" = {t(n o) gl eGP AneN A n-—gl'} XOR-merge gateways
Ty = {tliel}y, Te:=T,uTuT)", T :=TguTTyinteractions
class'(t;) = class(i) message class assignment
ad = {(Pnima)tns)n1 = n2 A n1 ¢ G A npe TUG]UGT}  interactions/AND-gateways in
U {(tn,,P(nimo))ln1 = n2 A np e TuGS UGT} interactions/AND-gateways out
= {(P(m,nz)at%m))lm —>ng A ngeGY} XOR-merge in
U {(tﬁo,nl)’p(m,nz))’nO —>ny—>ng A npeGY} XOR-merge out
U {(Pr1,m2) tingmy) )1 > M2 > 3 A mp e Gy } data-based XOR-split in
u {(tfnl,n2)7p(”1,n2))|n1 —>ng A nieGy} data-based XOR-split out
U {(Pmon1) tns)no > n1 > na A ny € GELY event-based XOR-split
-5 = {(t;,v)|(4,v) e->} data assignment relation
S 9 — S
grd'(t) = { tgrzci’((gx’n)) ’ Zzz = tigzm) € Ix guard assignment

Theorem 1 states that the mapping from DAChors to DAI Nets preserves well-formedness. The application to
our example is shown in Example 3 and Fig. 4.




Theorem 1 (Preservation of Well-Formedness).
Let DAC be a DAChor that is mapped to a DAI Net #. If DAC is well-formed, # is well-formed as well.

We now prove Theorem 1. Our proof consists of three parts that correspond to the three properties of well-
formedness for DAI Nets. First, we prove the first property, i.e., each transition has at least one preceding and one
succeeding place:

Proof 1 (Preservation of Well-Formedness (Property 1)).

Let DAC = (N,1,G,es, E., G5, G, G5, G2, GL LV, class, —, ->, domy, grd) be a well-formed DAChor. DAC
is mapped to the DAI Net #. The latter is defined as # = (P, pin, Po, Pyi, T, Ts, T1, V, class’,—',->' domy, grd’),
whereby

Case 1: t =ty €T, = {tg, 9. € G, UG}

= In;,ne e N:ny - g, > no

= IP(n1g.)r Pgema) € P (s ge) ), (g Dgema)) €

L€ P(nig.) = T =" Digyna)-

Case 2: t=1(y. , €T} = {t?gi,n1)|gi €eGyx AnieN A g —>ni}
= dng,n1 € N :ng - gy - m

= IP(n,92)s Plgzm) € B (Pnag2) Uge may)s Fgg my Plozmn)) €
e Plnags) = L =" Pgzn)

Case 3: t = t?}lhg?) €Tl := {t?;h’g?ﬂgf(” eEGT AnieN A np—gl'}
= dnj,no e N :ng — gl - ng

g E|p(my;”)’p(,g;"mz,) ep: (p(m,g;")’tz?%g;"))’ (t@hg;”')’p(g’x"vm)) e’
L€ Pnygr) > L P(gy )

Case 4: t = t; € T[ = {tl|7j € I}

= dni,ne e N:ny —>i—>no

Subcase 4.1: ny € G,

= dnge N-Gi, :ng—>ng

= Eip(no,nl)ap(i,nz) : (p(no,nl)vti)? (t’iap(i,ng)) e’
L., Dingmy) = =" D)

Subcase 4.2: ny ¢ G,

= AD(n1,i) Plina) * (P(nyiys 1), (45 Ding)) €
e, Pinyiy = t =" Plins)

Thus, a transition has at least one preceding and one succeeding place, consequently the first property holds. O

Second, we prove that the data of an interaction transition is solely assigned to variables of the same data domain:

Proof 2 (Preservation of Well-Formedness (Property 2)).

Let DAC = (N,1,G,es, E.,G5,GT, G5, G2, GT LV, class, —, ->, domy, grd) be a well-formed DAChor. DAC
is mapped to a DAI Net #. The latter is defined as # := (P,pin, Po, Pyi, T, Ts, T1,V, class’,—',->' domy, grd").
Let t; € TT be an interaction transition and v € V a virtual data object of #. Then:

(ti,v) " = (i,v) e->

= domg(class(t;)) = dome(class(i)) = domy (v)

Thus, data assignments are correct, consequently the second property holds. O




Finally, we prove the third property, i.e., there exists no cycle solely consisting of places and silent transitions.
For this purpose, we define a function gate, which assigns to each silent transition in # a gateway in DAC.
Furthermore, we show that the gates of two silent transitions are connected if the silent transitions are connected
by a place in Lemma 1. trans

Definition (Gate of a Silent Transition).
Let DAC = (N,1,G,es, E.,G5,G, Gy, G2, GT, V, class, —, ->, domy, grd) be a well-formed DAChor. DAC
is mapped to a DAI Net # = (P, pin, Py, Pf;, T, T5,T1,V, class’, =", ->" domy, grd"). Then:
The function gate:Ts — (G - G%,) : ts — gate(ts) assigns to each silent transition its gate, with
9+ iﬂt_tg €T, ={tg,]g+ e GLLGT}
gate(ts) =4 9%, ft= (g ) € I3 = {tsg n1)|gi €eGyx AnpeN A gy —>ni}
g Wt =10 gy €T = {t(n o9 TeGl AnieN A np—gl}

Lemma 1 (Connected Silent Transitions imply Connected Gateways).

Let DAC = (N,I,G,es,E.,G5, GV, Gy, GE, GV, class, =, ->, domy, grd) be a well-formed DAChor. DAC
is mapped to a DAI Net # = (P, pm,Po,PfZ,T Ts,T1,V,class',—',->' domy, grd").

If there are two silent transitions ts, < € T's that are connected by a place D(ny,ny) € P (cf. Def.7), ie., —>’ p— t?.
Then holds gate(tl) — gate(t?) holds.

Proof 3 (Connected Silent Transitions imply Connected Gateways (Lemma 1)).
Let DAC = (N,1,G,es, E.,G, GV, G, G, G, V., class, —,->,domy, grd) be a (well-formed) DAChor that
is mapped to a DAI Net #, The latter is defined as # = (P, pin, Po, Pti, T, Ts,Tr,V, class’, »',->' domy, grd’):

Case 1: tl =t, €T, and g, := gate(t}) =e GS UG™
Subcase 1.1: t2 =t,," € T\ and g, := gate(t?) e G5 UG™

= (t g+ P(a, 3) (p(ab)>tg+’) e~' = a=g, Ab=g." = g —>g)
Subcase 1.2: 15 =10 ./, "eTs and gi' = gate(t?) € G5 x

= (tg,,P(ap)) (p(ab)7 Ggsrmny ) €' = a=gr A b=g = g. gy
Subcase 1.2: t2 = g ,,)' eT™ and g™ = gate(t?) e GT

(tg+,p(a7b)) (p(a:b)’t"(?;;%g;n/),) E—), = a=0g+=n2 N b = g'g’” = g+ —> g’>r<nl
Case 2: t! = (g:my) € TX and g = gate(t?) € G5 x
Subcase 2.1: t2 =t,," € T\ and g, := gate(t?) e G UG™

(tsg ) \D(a, b)) (p(a,b)’tg+,) e—' = q :gf< A b= ny = g+/ = gi —>g+l
Subcase 2.2: t2 = tegermyy € T% and g3/ = gate(t?) € G5 x

= (s ) Pla b)) (p(a,b)at?g;/mz)/) ' = a=g; ANb=m=g = gi-g
Subcase 2.3: t2 = =tln,. m,)’ eT™ and g™ = gate(t?) e G

(t(g 1) Pa, b)) (p(a by, b (n2 gm) )E_’

= a= gx_n2/\b nl_gx :gx%gx

Case 3: t! = tny gy € T and g = gate(t?) e G™
Subcase 3.1: t2 =t,," € T\ and g, := gate(t?) e G UG™
= (¢ ?TL“ g p(a b)) (p(a,b)atg+’) e~' = a=g" Ab=g.' = gI'>g/

Subcase 3.2: 17 = t7,.,, \" € T} and g}’ = gate(t}) € G} x




= (t(, gm)jp(aw) (D) tlgermy) ) € = a=gl A b=gl" = g0 > g%

Subcase 3.2: t2 = =0, m,)’ eT™ and g™ = gate(t?) e G
= (U, gy P(ab))s (Pa)s tny gmny ) €' = a=gl =na A b=gl" = g > g7

Thus, for all cases gate(tl) — gate(t?) holds and Lemma 1 is proven. O
We use function gate and Lemma 1 to prove the third property of well-formedness of DAI Nets by contradiction:

Proof 4 (Preservation of Well-Formedness (Property 3)).

Assume property 3 of Theorem 1 is violated. Then: There exists a well-formed DAC =
(N,I,G,es, Ee, G5, GV, G, G GV class, —, ->, domy, grd) that is mapped to a non-well-formed DAI Net
#, with # = (P, pin, Po, Pyi, T, Ts,T1,V, class', =", ->' domy, grd"):

= 3Apo,p1,-.-Pn € Pyto,t1,...tn€Ts:pog—>"to~>"'p1 > t1 > - =" p, ="t > po

= gate(ty) - gate(t;) — .- — gate(t,) - gate(ty)

= dgg := gate(ty), g1 := gate(ty), ... gn = gate(ty) i go = g1 = -+ = gn = 9o

This contradicts our assumption. Thus, the third property holds. O

According to Proofs 1-4, the mapping from DAChor to DAI Net (cf. Def. def:mapping) preserves all three
properties of well-formedness . Thus, Theorem 1 holds.

Example 3 (Transformation).
The DAChor DAC = (N,I,G,es, E.,G7,GV, G5, ,Ge,, GV, class,—,->,domy,grd) from Example 2 is
mapped to the DAI Net # = (P, pin, Py, Pt;, T, Ts,Tr,V,class’, ', ->' domy, grd") as follows (cf. Fig. 4):

P= {Pin = Plesin) Plin in) s Plin.ia) s Plia,g3h) Ploghoia) Plogho7) 2 Pliais) s Plis,g32) Plog2 el Plog2 o7
(g3 si6.)» Pis.ir) s Plinis) Pis,e2)
Pri = {pgsz 1), p(z&e 2y} P, = P-({pin}u Pp)
I = {t xota)’ (gdx 93)’ (gdx ee)’ (gdx)gx )} e = {t(gji,gi”)’t(gsi,gl”)} =
Ts = T+UTSUTm Ty = {tilvtizv--'atis}
V= {Status,Order} " = {(t,,Status), (t;;, Order)}
- = {(p(es,i1)7ti1)7(p(il,’iQ)?ti2)?(p(iz,i3)7ti3)7(p(g2i7i4)7ti4)7(p(i4,’i5)7t7:5)7(p(g;n,iﬁ,)?tiﬁ)?(p(i6,7;7)7ti7)7
(p(17,18)7 Zg) (tzlap(u,lz)) (tlgap(127i3))a(ti37p(i3,g;)1<))7(ti47p(i4,i5))7(ti5,p(i57gsi))7(tif,7p(i5,i7))7
(tir Plin,ia))» (Fiss Pis.e2))s (Pwdx,gx ) Hagt.am) (p@;iﬁgw’t(gsz,g;n))’(t<g;1,g;n>’1’<g:",iay>)>
(t(952 m)7p(gx ,26,)) (p(13,g l)7 (gsl 1'4)) (p(13 g51)7 (gsl M)) (p(15 9352) fgsz 1))7
(p(1,5,gdx)a (952,97 )) (t(g 14)ap(gdx,z4)) (t(gsl )7p(gdx,g )) (t(gs2 1)7p(gdx,el))a(t?g2§7g)v<n)7p(g§3,g;”))}
class'(t;;) = Request PET class'(t;,) = Confirmation | class'(t;;) = Request Trans.
class'(ti,) = Request Exam. | class'(t;;) = Result class'(ti;) = Arrival
class'(t;,) = Retransport class'(t;;) = Return
domy (Status) = Dstatus grd( (g1 ,i4)) = Status = critical grd( (a5 g7 )) = Status = uncritical
domy (Order) = Dorder | grd (t 2y) = Order = abort grd (t o) = Order = continue
dx’ dx’ X

E. Behavior of DAI Nets

Since DAI Nets are based on both WFD Nets and IP Nets, we use token semantics (i.e., tokens assigned to
places and token changes) to define their behavior. Together with the values of variables, tokens define the marking
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Fig. 4. DAI Net derived for the patient transportation scenario

of a DAI Net. Each Interaction Net starts with an initial marking, with exactly one token placed in the initial place
pin, and each variable having the empty value €. A marking is called final, if all tokens belong to final places of
Py;. A transition ¢ is activated under marking m, iff all directly preceding places of ¢ contain at least one token,

and the guard of ¢ is evaluable and evaluates to true.

Definition 8 (DAI Net Markings and Activated Transitions).
Let # = (P,pin, Py, Py;,T,Ts,T1,V, class,—,->,domy, grd) be a DAI Net. Then: A marking of # is a tuple

m = (©,val) with
e ©: P — Ny assigns to each place the number of corresponding tokens,
e val : V = Qg assigns to each variable its current value; val(v) is either the empty value € or an element of

the variable’s domain, i.e., val(v) € domy (v) U {€}.
Additionally, for each DAI Net # we define the

o set of all markings My, whereby
My :={m = (0,val) | m is a marking of # }
e initial marking m;fz := (@i, valin) € My, whereby
1, if p=ps
Oin(p) = { 0 6{55 Pin )\ yyev: valip(v) =€

o set of all final markings F4, whereby
Fy:={(0,val) e My|Vpe P:0(p) +0 < pe Py}
e transition activation relation ~S My x T. m ~ t denotes that marking m € My activates transition t € T,

iff the following conditions hold:
1) Vpe P7t:o(p) > 1,
2) Yo~ grd(t):val(v) # €
3) grd(t) is satisfied for marking m

If a transition is activated, it may fire and lead from the current marking to a subsequent one. More precisely,
one token is taken from each preceding place and one is added to each succeeding place. Silent transitions fire
immediately when they become activated. Activated interaction transitions fire, if and only if a message of the
corresponding message class is sent. In this case, the value of the message is assigned to virtual data objects as



expressed by the data assignment relation. Note that a message can only be sent if an interaction transition of the
related message class is activated and no silent transition is activated (cf. Def. 9).

Definition 9 (Options and Subsequent Markings of DAI Nets).
Let # = (P, pin, Po, Pti, T, Ts,T1,V, class, =, ->, domy, grd) be a DAI Net, an m = (®,val),m’ = (&',val") e My
be two related markings. Then:

o Oy :=TguXy is the set of all options on #.
o opty My — 20# :m e {oe OxlAm’ A m S/ } maps each marking m to the options available under m.
« m > m' expresses that m leads to m' by applying option o € opty(m) with:
Case 1: o=tg € Ts is a silent transition. Then: m 5o holds, iff each of the following conditions is met:
1) m~t,
2) Vpe P~ :0'(p) =0(p) - L,
3) Vpe P~ :0'(p) =0(p) + 1,
4) Vpe Pl : o' (p) = o(p),
5) YveV :val'(v) = val(v).
Case 2: 0= = (c,z) € Xy is a message. Then: m 5w’ holds, iff the following conditions are met:
1) Vi, € Tg:m  tq
2) IieTr-m~1t; AN pe Eclass(ti)’
3) Vpe Pl :0'(p) =0(p) - 1,
4) VpeP':0'(p)=0(p) +1,
5) Vpe Pt :0'(p) = o(p),
6) Yv eV with t;->v:val'(v) =z,
7) Yv eV with t; -»v:val'(v) = val(v).

Based on Def. 9, the following two theorems can be derived.

Theorem 2 (Separation of Options). Let # be a DAI Net. Then: For each marking, the set of options either contains
solely silent transitions or messages or it is empty, i.e.,

Vme My :opty(m)+@ = optyu(m)cTs®opty(m)c Xy

Theorem 3 (Termination of final markings). Let # be a DAI Net. Then: For each final marking, the set of options
is empty, ie.,

VmeFy : opty(m) =0

We prove Theorem 2 and Theorem 3 by contradiction:
Proof 5 (Separation of Options).
Let # = (P, pin, Py, Py, T, Ts, Ty, V, class, —,-»,domy, grd) be a DAI Net. Then: Assume, Theorem 2 is violated

for #:
= ImeMy:opty(m)+ @ and Ity e Ts, € Xy : to, i € opty(m)

= Hm'ej\/l#:mgm’ = VigeTs:m»ts = m#tiy
= to ¢ opty(m)

This contradicts our assumption. Thus, Theorem 2 is proven. O



Proof 6 (Termination of final markings).

Let # = (P, pin, P, Py, T,Ts,T1,V, class, —,->,domy, grd) be a DAI Net. Then: Assume, Theorem 3 is violated
for #£:

= Im=(0,val) € Fy:opty(m) + @

= FHeT:m~t = IJpeP:0(p)>21 A p>t

= p¢Pp = mé¢Fu

This contradicts our assumption. Thus, Theorem 3 is proven. O

Based on Def. 9, we define traces on DAI Nets as sequences of options. To be more precise, a trace corresponds
to a related sequence of markings that starts with the initial marking. If this related sequence of markings ends
with a final marking, we denote the trace as completed.

Definition 10 (Traces, Prefixes, and Extensions).
(A) Let # = (P, pin, P, Py;, T, Ts,T1,V, class, =, ->,domy, grd) be a DAI Net and T = (T )ke[1..n] € (9;éé be a finite
sequence of options (i.e. silent transitions and messages) with length || =:n € N. Let further m = (mk)kg[lnml] €
M;ﬁ be a finite sequence of markings with length n + 1. Then:

o 7 ~m denotes that T and m are related sequences, iff YVl € [1.n]:my X myeq and mq = mi
e last: M% — My with (my)ke[1..n] = M is a function mapping a sequence of markings to its last marking.
o TE (9%E is a trace, iff Im € M;ﬁ and T ~m. If last(m) € Fu, we denote T as completed trace.
o T4 denotes the set of all traces on #.
. 'T;E denotes the set of all completed traces on #.

(B) Let L € M* be a set of finite sequences over a set M and let a = (ar)per1..n],0 = (Ok ) ker1.41: ¢ = (Cm ) mef1..m] € L
be elements of L, i.e. sequences over M. Then:
e a4b (a<b)denotes a is prefix (real prefix) of b and b an extension (real extension) of a, iff n <l (n<1) and
Vi € [177,] ta; = bi,
e a+c=b denotes that a is extended by c to b, iff m+n =1, and a is prefix of b, and Vi € [1..m] : ¢; = by,
o L®:={aeLla<gb} (LI :={a € L|a< b}) denotes the subset of L that contains all prefixes (real prefixes) of
be L, and
o L*:={aeLlb<a} (L :={ae L|b<t a}) denotes the subset of L that contains all extensions (real extensions)
of be L.

We described the behavior of a DAI Net by means of its traces. We can also use traces to characterize the desired
behavioral properties of DAI Nets. The first one is determinism. It expresses that a trace is unique in terms of its
related markings, i.e., replaying a trace will always lead to the same marking. The second fundamental property is
soundness in terms of boundedness as well as the absence of deadlocks and lifelocks [15].

Definition 11 (Determinism and Soundness).
(A) We call a DAI Net # deterministic, iff for each trace T on # there exists exactly one related sequence of
markings, i.e., V7 €Ty :|{meMjylm~r7} =1

Let # be a deterministic DAI Net. Then:

marky maps each trace on # to its current marking, i.e. the last marking of the related sequence of markings:
marky : Ty > My : 7 0 marky (1) = last(m), whereby m is defined by T ~:m € MJ,.

Since # is deterministic, the definition of m is unique. Thus, marky is well defined.




(B) We call a deterministic DAI Net # sound, iff the following conditions hold:

o There exist completed traces on #, i.e., 7;; * g,
o Each trace on # is a prefix of a completed trace, i.e., Vv € Ty37 € ’T# v dT.
o The set of reachable markings is finite, i.e.,

[{m e My|3T € Ty :last(t) =m}| eN

Note that the observable behavior of any DAI Net is solely explained through the messages exchanged. Hence,
we must abstract from the silent elements of traces (i.e. silent transitions) and define the observable behavior as a
conversation being the projection of a trace to its messages (i.e., the part of the trace defining its semantic). In the
following, we first introduce projections of sequences.

Definition 12 (Projections and Conversations).
Let A, B be two sets with B ¢ A, and # = (P, pin, Py, Py, T,Ts,T1,V, class, =, ->,domy, grd) be a DAI Net and
T € Tu be a trace on #. Then:
o lIp: A* -» B* :aw~ Ilg(a) is the projection function that restricts a sequence a € A* to its elements of B,
o1 € Z%E denotes a conversation on F, iff it is the projection of a trace on # to its messages, i.e.,
3(r) € Ty : s, (7) = n. 1 denotes a completed conversation on #, iff it is the projection of a completed
trace on #,
o Cy denotes the set of all conversations on #,
. C;; denotes the set of all completed conversations on #,
o congy Ty —Cy:7w cony(r) =1y, (7) maps each trace to the related conversation.

Example 4 (Traces and Conversations).
Consider the DAI Net # from Example 3. Its set of completed traces 7;; consists of traces 1|, T2, and T3. Projecting
them to their messages leads to the conversations 11, 12, and 13, which build C;E:

7 = <(Request PET,uncritical),(Confirmation, '), (Request Trans.,_l),tfgsl gm),t’(:;sl gy
dx?Ix dx?9Ix
(Arrival,e),(Retransport,e),(Return,e) >
75 = <(Request PET,critical),(Confirmation,_ '), (Request Trans.,_l),tfgsl m,(Request Exam.,€),
dx’
(Result,abort),tfgzieé) >
73 = <(Request PET,critical),(Confirmation,_ '), (Request Trans.,_l),tfgsl 1-4),(Request Exam.,€),
dx’

(Result, continue), tﬁgii,gi")’ t?;ﬁ»gi“)’ (Arrival,e),(Retransport,e),(Return,e) >

< (Request PET,uncritical),(Confirmation,_'),(Request Trans.,_'),

m = cong (1) =g, (11)
(Arrival,e),(Retransport,e),(Return,e) >

2 = cong(r2) =I5, (m2) = <(Request PET,critical),(Confirmation, '),(Request Trans.,_'),
(Request Exam.,c),(Result,abort) >

n3 = cong(73) = 1lx, (73) < (Request PET,critical),(Confirmation, '), (Request Trans., '),
(Request Exam.,e),(Result,continue),(Arrival,e),(Retransport,e),

(Return,€) >

As aforementioned, the behavior of silent transitions is not observable. Hence, to ensure compatible behavior of
participating roles, silent transitions must behave deterministically. In other words, it must be possible to determine
the behavior of a DAI Net solely based on the messages exchanged, i.e., message-determinism. First, this requires,




that firing of silent transitions always terminates, i.e., it is impossible to solely execute silent transitions infinitely (cf.
Theorem 4).Second, when silent transitions terminate, the set of activated options may only depend on the messages
exchanged before, i.e., it should be independent from the order in which the silent transitions were fired.

Theorem 4 (Termination of silent subtraces). On a well-formed DAI Net #, any trace cannot infinitely be continued
by silent transitions, i.e.

V7 €Ty : AN €N such that Vv € T;7 with [t|+ N <[v] = cong(r) # cong(v).

To proof Theorem 4, we introduce silent ways, which solely consist of places and silent transitions. With the
use of those, we define a ranking function that decreases each time a silent transition is fired.

Definition (Silent Ways).
Let # = (P, pin, P,, P, T, Ts,T7,V, class, —, -», domy, grd) be a deterministic and sound DAI Net. Then:
e A silent way w from a place p € P to a silent transition t € Ts is a sequence of alternating places and silent
transitions w =< pg,to,P1,t1, - -« Pn,tn >€ (PTs)* with p = pg and t = t,,, whereby holds py - ty - p1 —
t) == pp —
o Wy as the set of all silent ways on #, and
. W;Z:’t ={<po,...,tn > Wxlpo =p A tn =t} as the set of all silent ways on # from pe P to t € Tg.

Consider that Def. 6 prohibits cycles of silent transitions. Thus, each place and each transition can occur at least
once in a silent way. Consequently, Wy is finite. Obviously, the same applies to each Wi_»t EWau

Lemma 2.
Let # = (P, pin, Py, Py, T, Ts,T1,V, class, —,-»,domy, grd) be a deterministic and sound DAI Net and t,t" € Ts
be silent transitions. Then:

vpe Pt Y Wil s mwert s s et
pePts n WEI e 3 g

Proof 7.

The right inequality |W£:)t,| > IZD: |Wz;»t’| holds because of:
qepP<?

VqEP(_t:p%t%q = quP(_tIVQ): <q7t05plat17'°'pn7t/> € Wi&_»t,
= 3w =<p,t,qto,p1,t1,...Pn,t' > € W;Z:’t’

The left inequality Vpe P71 : ¥ |W;[»t,] > |W5f’t’| holds because of:

qge Pt
-t q—t’ p—>t’
peP = U Wi 2wy
qeP~?
q—t’ gt pst’
S Y W U W e |
geP—t qeP~t

Thus, Lemma 2 is proven. O

"For reasons of simplification, we abstract from irrelevant message content in Example 4




Based on Lemma 2 we prove Theorem 4. For this purpose, first, we introduce a transition ranking function ¢ that
maps a marking and a silent transition to a natural number. Second, based on (, we define a net ranking function
¢ that bases on maps each marking of a # to a natural number. Finally, we show, that ¢ is decreased each time
a silent transition fires (cf. Lemma 3). Thus, £ is an upper bound to the number of steps (i.e., firings of silent
transitions) that can be done in # until the net terminates.

Definition (Ranking Functions). Let # = (P, pin, Py, Pti, T, Ts, Ty, V, class, —,->,domy, grd) be a deterministic
and sound DAI Net. Then, the transition ranking function  is defined as below:
o (4:MyxTs—N:((0,val),t) » (((®,val),t) is the transition ranking function that maps a marking and
a silent transition to a natural number, with (((®,val),t) = ZPQ(p) * |W§:’t|.
pe

o £: My - N:m w— &(m) is the net ranking function that maps a marking to a natural number, with

§(m) =2 C(mvt)'
teTs

Lemma 3 (The Rank of a Net Decreases when a Silent Transition Fires).
Let # = (P,pin, Po, Py, T,Ts,T7,V, class, —,->,domy, grd) be a deterministic and sound DAI Net. Further,
m,m' € My be two markings of #, with m = (®,val), m' = (0',val"). Finally, ty € Ts be a silent transition of #

. ¢
with m = m/. Then:

§(m) > &(m)

To prove Lemma 3, we partition £ based on its definition for each ¢y € Tls that may be fired:

§(m) = teZZ:“ C(ma t) = C(m, tO) + > C(m7t)

teTs—{to}

We consider both parts (i.e. {(m,tp) and Y  ((m,t)) on its own to show that £ decreases, whenever a
tETs—{tg}
silent transition % is fired.

Lemma 4 (The Rank of a Fired Silent Transition Decreases).
Let # = (P,pin, P, Pti,T,T5,T1,V,class,—,->,domy, grd) be a deterministic and sound DAI Net. Further,
m,m' € My be two markings of #, with m = (®,val),m' = (®',val"). Finally, ty € Ts be a silent transition of #

. t
with m = m/. Then:

<(ma tO) > C(mlv to)

Proof 8 (The Rank of a Fired Silent Transition Decreases (Lemma 4)).
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Thus, ((m,tg) > ¢(m’,ty) holds and Lemma 4 is proven. O

Lemma 5 (The Rank-Sum of all Unfired Silent Transitions does not Increase).
Let # = (P,pin, Py, Py, T,Ts,T1,V, class, —,->,domy, grd) be a deterministic and sound DAI Net. Further,
m,m' € My be two markings of #, with m = (®,val),m' = (®',val"). Finally, ty € Ts be a silent transition of #

. ¢
with m > m/. Then:

X ((mt)yz ¥ ((m1)

teTs—{to} teTs—{to}

Proof 9 (The Rank-Sum of all Unfired Silent Transitions does not Increase (Lemma 5)).

Y mit) = z(e@)*\vv?\))
teTs—{to} teTs—{to} \peP

SN N COR | B COR T B9y <®<p>*|wsftl>)
tETsf{tO} peP—t peP<t peP+t

= Y | 2 (@@ Y (@) -1) = )
tels—{to} \peP™" pePt
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T (Z (@ =)+ ¥ (@@ )+ S (o)« i)

teTs—{to} \peP~?t peP+t pePt
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peP—t peP+t
>0
! p—>t / p—>t 1 p—>t
> ) (Z (®(p)*|W# |)+ > (@(p)*ﬂ/\/# |)+ D (@(p)*w# |))
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Thus, Y ((m,t)> ¥  ((m',t) holds and Lemma 5 is proven. O
teTs—{to} teTs—{to}

Having proven that Lemma 4 and Lemma 5 hold, we now can prove Lemma 3:

Proof 10 (The Rank of a Net Decreases when a Silent Transition Fires (Lemma 3)).

Em) = 3 C(mt)=C(m,to)+ > ((m,t)

tETS tETS_{tO}
> C(m,a tO) + Z C(m?t) 2 C(m,7t0) + Z C(mlvt) = Z C(mlvt) = é(m,)
teTs—{to} teTs—{to} teTs
Thus, £(m) > &(m') holds and Lemma 3 is proven. O
The termination of silent subtraces (i.e, Theorem 4) is a direct consequence of Lemma 3:

Proof 11 (Termination of Silent Subtraces).
From Lemma 3 results:

V7 e Ty : AN = {(marky(r)) e N: Vo e TZ7 with
IT|+ N <|v| = cong(T) # cony(v).

Thus, Theorem 4 is proven. O

According to Theorem 4, a DAI Net is message-deterministic, if the set of activated messages solely depends on
the messages exchanged before (cf. Def. 13).

Definition 13 (Message-Determinism).
We call a deterministic and sound DAI Net # message-deterministic, iff the same sequence of messages always
activates the same messages, i.e., the set of activated messages solely depends on the messages exchanged before,
ie.,
Vr,oeTy : (opt#(mark#(T)), optu(marky(v)) e Xy A g, (1) =1Ig, (v))
= opty(marky(7)) = opty(marky(v))

Let # be a deterministic, sound and message-deterministic DAI Net. Then:

moy : Cy — 2%# 1 moy(n) maps each conversation to the set of messages it activates, with
moy (n) = opty(marky (7)), 7€ O is defined by n = cony () and opty(marky(r)) € Xy

Since # is message-deterministic, the definition is unique. Thus, moy is well defined.

Until now, we solely considered DAI Nets and conversations from a global perspective. However, a role solely
knows those messages of a conversation it sends or receives. Thus, in Def. 14 the view of a role on the messages
of a conversation is introduced. Further, for each role the set of activated options is defined.

Definition 14 (Views on Conversations and Options).

Let 7T = (R,D,C,dom¢c,sc,rc,€) be an interaction domain and let the tuple # =
(P, pin, Po, Pti, T,Ts,T1,V, class, —,->,domy,grd) be a sound, deterministic, and message-deterministic
DAI Net. Let further R € R be a role. Then we can define the following views




. vcﬁ :Ch ~> YR (M)ke[1.n] P vcﬁ(n) := s, (n) maps each conversation on # to the view of R on it,
whereby the view is the projection of the conversation to the messages sent or received by Role R,

. vciﬁ 1€y > YR (k) ke[1..m] ~ vci*(n) :=1Ix, (n) maps each conversation on # to the projection of the
conversation to the messages sent by Role R,

. voﬁ 12%# 5 2%R M voi(M) := M n X maps each set of messages to its messages that may be sent or
received by Role R,

. voﬁ‘> : 2%# > 9%r> M > voﬁ_’(M ) := M NnX k., maps each set of messages to its messages that may be sent
by Role R.

Based on Def. 14, we can define realizability. It denotes DAI Nets to be deterministic from the viewpoint of a
role. Further, clear termination is defined, which indicates that a role can determine when it sent or received its
last message.

Definition 15 (Realizability, Clear Termination).
Let # be a deterministic, sound, and message-deterministic DAI Net. Then, for a role R € R:

o # is realizable, iff the messages role R may send solely depend on the messages R has sent and received
before, i.e.,

VReR : Vn,keCy: Uci(n) = Ucﬁ(/@') = voﬁ_’(mo#(n)) = voﬁ_’(mo#(/ﬁ))

o # clearly terminates, iff it solely depends on the messages R has sent and received before whether further
interaction with R will occur, i.e.,

VReR : Vnecgﬂmec#:vcﬁ(n)q vcﬁ(m)

An important issue concerns decidability of the introduced properties of DAI Nets and DAChors; i.e., determinism,
soundness, message-determinism, realizability, and clear termination (cf. Def. 11-15). Basically, these properties
are decidable. Due to lack of space, we omit a discussion in this technical report.

IV. RELATED WORK

In the context of workflows [1], [16] and SOA [17], correctness has been discussed for a long time [15].
The approaches presented [12], [18] consider data as well. The two paradigms for modeling choreographies (i.e.
interconnection and interaction models) are compared in [19]. Examples of interconnection models are BPMN 2.0
Collaborations [3] and BPEL4Chor [4]. There are several approaches that discuss the verification classic soundness
criteria (i.e. boundedness, absence of deadlocks, absence and lifelocks) of distributed and collaborative workflows
and service orchestrations [5], [13], [14], [20]-[24]. Some object-aware [25], [26] and data-driven approaches [27],
[28] use data dependencies to interconnect processes and to define process interactions. Examples of interaction
models (i.e., the paradigm we apply) include Service Interaction Patterns [7], WSCDL [8], iBPMN Choreographies
[9], and BPMN 2.0 Choreographies [3]. Our approach has been mainly inspired by [9], which defines the behavior
of iBPMN Choreographies through their transformation to Interaction Petri Nets and further discusses correctness
and realizability. Realizability of interaction models is also discussed in [10], [29]. Furthermore, [11] provides a tool
for checking realizability of BPMN 2.0 Choreographies. However, all these approaches do not explicitly consider
the data exchanged by messages and used for routing decisions.

In [30], [31], state-based conversation protocols are introduced, which are aware of message contents. The
messages (and data) exchanged trigger state transitions. Thus, different data may trigger different transitions.
However, conversation protocols do not support the modeling of parallelism since they are state-based. Furthermore,
realizability of conversation protocols requires that at every state each partner is either able to send or receive a




message or to terminate (autonomy condition). This condition strongly restricts parallelism. For example, consider
a choreography solely consisting of two parallel branches: In the upper branch partner A sends a message m; to
partner B and partner B sends message ms to A in the lower branch. Obviously, the autonomy condition is violated
although the choreography is realizable (cf. Def. 15). Hence, conversation protocols do not constitute interaction
models in our point of view. Thus, to our best knowledge the framework presented within this technical report is
the first one that considers realizability and clear termination of data-aware interaction models.

V. SUMMARY AND OUTLOOK

Our vision is to provide sophisticated support for distributed and collaborative workflows. To foster this vision,
we base our work on the analysis of scenarios from different domains. In essence, we learned that data support is
practically relevant for interaction models from a variety of domains.

Further, this technical report introduced a formal framework for data-aware interaction models and described
how correctness can be ensured. The main parts of our framework include DAChors and DAI Nets as well as
the transformation of DAChors to DAI Nets. Further, the behavior of DAI Nets is defined. Other fundamental
contributions are the definitions of correctness criteria for data-aware interaction models. The latter include
message-determinism, realizability, and clear termination. In future work, we will extend our framework to support
asynchronous message exchange and related correctness properties. Finally, we will develop algorithms for efficiently
checking correctness of data-aware interaction models. In this context, we plan to apply abstraction strategies to
large data domains similar to [32].

Considering the data perspective is important but may be not sufficient to enable sophisticated support for
distributed and collaborative workflows. The time perspective [33]-[35] and the resource perspective [36], [37]
should be considered as well in the context of interaction modeling.

However, correctness criteria discussed in this technical report solely address structural and behavioral correctness.
As outlined in [38] semantic correctness (i.e., business process compliance) is challenging for distributed and
collaborative processes as well. Thus, we will try to transfer the results of our previous work about business
process compliance [32], [39]-[41] to distributed and collaborative processes.

Fields of application of our research may be domains with collaborative and heavily interacting processes, e.g.,
healthcare domain [42] and automotive domain [28], [43].
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