
On Evolving Partitioned Web Service Orchestrations
Walid Fdhila, Stefanie Rinderle-Ma

University of Vienna, Austria,
Faculty of Computer Science

{walid.fdhila, stefanie.rinderle-ma}@univie.ac.at

Aymen Baouab, Olivier Perrin, Claude Godart
University of Lorraine,

Nancy, France
{aymen.baouab, olivier.perrin, claude.godart}@loria.fr

Abstract—Many researches argue that centralized Web Service
(WS) orchestrations stop short in dealing with key requirements
such as scalability, privacy and reliability. Consequently, frag-
mentation and decentralization have been proposed to overcome
these limitations. In detail, the centralized orchestration is
fragmented into behaviorally equivalent distributed partitions
such that their combined execution recreates the function of the
original orchestration. However, the evolving nature of business
processes created the need for an efficient change support. Since
the decentralization leads to the distribution of the activities,
the control and data flows, it becomes difficult to specify the
changes directly on the derived partitions. Therefore, it is more
judicious to specify the changes on the centralized orchestration
model and propagate them to the derived partitions. In this paper,
we propose a comprehensive change framework for partitioned
WS orchestration scenarios and demonstrate how to specify and
propagate the changes from the centralized model to its resulting
decentralized partitions.

Keywords-decentralization, business process, change propaga-
tion, web service.

I. INTRODUCTION

Globalization and the increase of competitive pressures
created the need for agility in business processes, including
the ability to outsource, offshore, or otherwise distribute its
once-centralized business processes or parts thereof [1]. In this
sense, many works were proposed to partition a composite web
service [2], [1]. The partitioning transforms the centralized
process into behaviorally equivalent distributed partitions such
that their combined execution recreates the function of the
original orchestration. The flexibility introduced by the de-
centralization on the other hand raises necessary requirements
like adaptation to change. Changes may range from simple
modifications to a complete restructuring of the business
process to improve efficiency. In the context of the decen-
tralized service orchestrations, applying these changes in a
straightforward manner on the derived orchestration partitions
is a complex maintenance task, since the control and data flows
are decomposed over multiple partitions. Moreover, changing
a derived partition may affect the way it interacts with others.
In this sense, we have been investigating change propagation
in decentralized composite web services [3]. Given a well-
behaved structural update on a centralized orchestration, our
approach automates the change forward propagation that
consistently propagates the update to the derived decentralized

The work presented in this paper has been partly conducted within the
project I743 funded by the Austrian Science Fund (FWF).

partitions. The main advantage of this method, is that only
partitions concerned by the change are affected, and there is
no need to recompute the whole decentralization or redeploy
all the partitions.
This paper is an extended and revised version of our previous
work [3]. With respect to this version, the extensions include
the adopted change patterns, a revision of the actions for
change propagation, the theoretical evaluation of the presented
method and some implementation details.
The remainder of this paper is structured as follows. Section II
illustrates and motivates the importance of change propagation
in decentralized orchestrations. While Section III presents the
formal definitions, Section IV details the change propagation
mechanism. Section V evaluates the approach and Section VI
presents the related works. Finally, Section VII summarizes
the contribution and outlines future directions.

II. MOTIVATION

To motivate and illustrate the methods presented in this
paper, we make use of the sample orchestration (cf. Figure 1)
presented in [4]. This orchestration model encodes a claims
handling process at an insurance company IC. For more details
about the example, the readers may refer to [4].

This centralized model presents many drawbacks since all
interactions between the services are channeled through IC.
The partitioning consists in splitting the latter into small
partitions each of which executed by a separate orchestrator.
The process is split according to a criterion, such as each
partition include only activities which have the same properties
(e.g. privacy, role, optimization, etc.). For instance, one could
assign critical activities to the same partition to be executed
by a high secure orchestrator while assigning others to a
less secure ones. Figure 2 depicts a possible decentralized
execution settings for IC which is split into three partitions P1,
P2 and P3. Each partition includes a subset of the initial activ-
ities and extra activities to communicate with other partitions
(interaction activities). The connectivity between activities of
the centralized process is translated to that between activities
of different partitions, through message exchanges. Yellow
activities represent data exchanges and gray activities are
control flow connections. The partitioning of the centralized
process model example uses the techniques presented in [2].

Now, lets consider the process model in Figure 1 and assume
that IC wants to replace the fragment F by the new fragment
F ′. In this change, the choice patterns (g4 and g5) are replaced



a0:ES

a1:H

a2:DS

a3:P

a4:Ins a6:B

AND-split / AND-join XOR-split / XOR-join Data Link Control Link

IC : Insurance Company

Data item

a5:DS

X X

X

g1 g2 g3

g4 g5

g6

d2

d1
d3

d4
d5

a7:S
a6:B

a8:SFragment F'

d6

Fragment F

REPLACE(F', F.entry, F.exit )
g7 g8

Fig. 1. Insurance Claims Handling Process Example

Partition P1

a0:ES

Send_d1,2Send_sync1 Receive_sync2 Receive_d3,4 Send_d5 Send_sync3

a4:Ins

Partition P2

Receive_sync1

Send_d4

Send_d3

Receive_d1

Receive_d2

Send_sync2

a1:P a3:H

Partition P3

Receive_sync1

Send_sync2

Receive_sync3 

Receive_d5

a2:DS

Private view Public view

a5:DS

Private viewPublic view

a6:B
X X

F1

F2

AND-split / join XOR-split / join Synchronization LinkControl LinkX Inter-Patitions Data Link
Regions Affected by the 

change

Fig. 2. Decentralized Insurance Claims Handling Process

by parallel patterns (g7 and g8) and two new activities a8 and
a9 invoking the same service S are added as well as a data
dependency between a8 and a6. We assume that the added
activities have the same properties as the activities of partition
P1 and therefore would be assigned to P1. The activity a6 : B
is also concerned by the change since it becomes in parallel
with a9 and consequently the replacement would mainly affect
the partitions P1 and P3 (c.f. Figure 2). In Figure 2, the regions
F1 and F2 in partitions P1 and P3 respectively, represent
the fragments which are affected by the change. It should
be noticed that handling the changes locally and propagating
them avoid re-decentralizing the whole process. Indeed, re-
decentralizing the process model leads to the re-deployment
of all partitions (even those not affected by the change). In
this process example, the partition P2 is not concerned by the
change and would not be re-deployed.

III. PRELIMINARIES

In order to provide a generic approach for change propaga-
tion in partitioned composite services, we adopt a high level
reasoning using an abstract notation. A process model specifies
the control-flow and data-flow relations between activities,
using a specialized language such as the Business Process
Execution Language (WS-BPEL) or the Business Process
Modeling Notation (BPMN).

Definition 1 (Process). A process P is a tuple (O, D, Ec,
Ed, S) where

• O is a non empty set of objects which can be partitioned
into disjoint sets of activities A, events (start, end) and
control patterns Cp (choice, parallel, repeat, etc),

• D is a set of data,
• Ec is a set of control edges where, Ec ⊂ O×O,
• Ed is a a set of data edges where, Ed ⊂ A×A×D,
• S is the set of services invoked by the process.

In this paper, we assume that the processes are structured [5].
Recent work has shown that most unstructured process models
can be automatically translated into structured ones [6].

Definition 2 (Activity). An activity ai∈A is a tuple (in,
out, prop) where in, out ⊂D are the set of ai’s inputs and
outputs respectively, and prop is the set of ai’s properties (e.g.
the role of ai in the process, the service it invokes, its security
level, etc).
The partitioning of a process model with respect to a crite-
rion leads to a set of interconnected partitions, each defines
the relationship between the objects it includes. Partitions
communicate using the interaction patterns (i.e. send, receive,
etc) [7]. Next, we refer to the set of activities of the initial
process which respond to the same partitioning criterion λ (e.g.
activities having the same security level) as Ai | ∪Ai = A
and ∀i, j, i 6= j,Ai ∩ Aj = {∅}.

Definition 3 (Partition). A partition Pi is a tuple (Oi, Di,
Eci, Edi, Si) where

• Oi is a set of objects Oi ⊂ O∪Ii, where Ii is the set
of interaction patterns used by Pi (e.g. in Fig.2: sendd1,
receivesync2, etc).

• Di ⊂ D ∪ Sync, where Sync is the set of data used
for synchronization with other partitions (e.g. in Fig. 2:
sync1, sync2, etc).

• Eci is the set of control edges, Ec ⊂ Oi×Oi
• Edi is the set of data edges, Ed ⊂(Ai×Ai) ∪ (Ii×(I\Ii)).
• Si ⊂ S is the set of services invoked by Pi.

In the following, we define a fragment as a structured single
entry - single exit sub-graph of a process or a partition model.

Definition 4 (partitioning function). The Process parti-
tioning is a total function fλ : π → {πi}i=1..N that takes
a centralized process model P and produces a set of de-
centralized partitions {Pi} using the decentralization criterion
λ. Next, we extend this definition to take into consideration
fragments partitioning.

Definition 5 (Preset, postset, transitive preset, transitive
postset). We define the preset (postset) of an activity ai,
denoted •ai (ai•), as the set of activities which may execute
just before (after) ai and directly linked to it by a set of control
dependencies (e.g. in Fig.1 •a4= {a1, a2, a3}). We also define
the transitive preset (resp., transitive postset) of an activity ai
according to a partitioning criteria λ and denoted •Tλ ai
(Tλ ai•), as the set of activities having the same criterion
λ and which may execute just before (after) ai, and linked
to it by a set of control patterns or activities with different
criteria. The transitive preset of an activity in the centralized
process model represents the preset of the same activity in
the corresponding partition (e.g. in Fig.1, •Tλ a4 = {a0}



Change pattern Description

Insert(fragment,entry,exit)
Inserts a new fragment into the process between the
entry and exit edges in the centralized process
model.

Delete(entry,exit)
Deletes a fragment between the entry and exit
edges in the centralized process model.

Replace(fragment,entry,exit)

Replaces the existing fragment between entry and
exit edges in the centralized process model by a
new fragment.

Update(activity, prop)
Update an activity’s properties. For instance, its
security level, its role or the service it invokes.

TABLE I
CHANGE PATTERNS

since a4 and a1 belong to the same partition P1; c.f. Fig.
2 ). Next, we extend the relations in Definition 5 to that
between fragments. For instance the preset of a fragment F
is the smallest fragment including all activities which can be
executed just before it and directly connected to it.

IV. SPECIFICATION AND PROPAGATION OF CHANGE
OPERATIONS

In general, process models can be decomposed into SESE
fragments [5]. A SESE fragment is a non-empty subgraph
in the process model with a single entry and a single exit
edge. For every change in the process model, there is at least
one enclosing fragment. Here, we consider only the smallest
fragment that encloses the changes. This can be achieved using
the process structure tree (PST) [5]. In the following, we
consider that the fragments enclosing the changes are already
identified. In this work, we consider a set of basic change
patterns (c.f. Table I), based on which complex change patterns
can be expressed [8]. We also assume the well-behavedeness
of the updates propagated by the business analysts. It means
that the graph production on a business process model are
consistent with the behavioral requirements.

In the following, we demonstrate how to propagate the
changes made on a centralized specification of a web service
orchestration to its resulting decentralized partitions. A change
operation on the centralized process model is translated into
several change operations each related to a partition. We
also consider a process model P and its derived partitions
{Pi}i=1..n according to decentralization function fλ. An ac-
tivity is assigned to a partition Pi only if it responds to
criterion λ. Next, we call gλ the function which maps each
activity to a partition. We assume that an activity can not
be assigned to more than one partition. It should be noted
that the Replace change pattern can be replaced by the two
consecutive operations Delete and Insert. However, during
the change propagation, the number of derived operations
resulted from the Replace pattern is less or equal to those
derived from the concatenation of the Delete and Insert.

A. Change Pattern: InsertP (F ′, entry, exit)
The insertion of new fragment in P implies the insertion of

new activities with different criteria, connected through data
and control flows. In this paper, we consider the insertion in
sequence but can be easily extended to take into consideration
the insertion in parallel or with exclusiveness. The first step

is then to identify the partitions affected by the change
using gλ. To achieve this, we look for each partition which
respond to the same criterion of at least one activity of F ,
•F or F•. Indeed, if we consider two activities a and b in
sequence in the centralized process model P , such that they are
assigned to different partitions P1 and P2 after partitioning.
In this case, a and b would communicate through message
exchange. If we insert a new activity c between them such
it is assigned to a new partition P3, then we have also to
update the old communication between a and b. Therefore P1

and P2 are also concerned by the change. Once all affected
partitions identified, the second step consists in computing
what to insert in each partition as well as the exact position
for insertion. The idea is then to partition the new inserted
fragment F according to the same partitioning function fλ
and for each sub-fragment determine the exact position. We
consider {Fi}i=1..k the derived sub-fragments where a sub-
fragment Fi should be inserted in partition Pi. Note that the
insertion may result in the creation of a new partition. To
insert Fi in Pi, we first compute the transitive preset and
postset of Fi according to λ in P (•Tλ Fi, Tλ Fi•). Note
that •Tλ Fi and Tλ Fi• are directly connected in Pi via
control or interaction patterns (e.g. in Figure 2, a0 and a4

of P1 are directly linked by interaction patterns while they
were not directly connected in the centralized model). Then,
the exact position for the insertion of Fi in Pi is between
•Tλ Fi and Tλ Fi•. The problem now is how to connect Fi
with •Tλ Fi and Tλ Fi•. Indeed, the latter may already have
other fragments or activities between them (e.g. two fragments
in parallel with the same properties according to λ have the
same transitive preset and postset). In this case, we have to
identify the relations of Fi with •Tλ Fi, Tλ Fi• and possibly
the fragments between them. For this purpose, we calculate the
control paths linking Fi to •Tλ Fi and Tλ Fi•. Some of the
control patterns of these paths may already exist in Pi. To
deal with this, we use a union function to merge Fi with the
the fragments that may exist between its transitive preset and
postset. Finally, an update is required, if necessary, to update
the connections between •Tλ Fi (Tλ Fi•) and its postset
(preset) which may be on other partitions.

B. Change Pattern: DeleteP (F .entry,Fexit)
The delete removes the set of activities enclosed in the

fragment F ∈P . These activities are distributed over the
partitions and linked through interaction or control patterns. In
the centralized model, the deletion of F implies the deletion of
its links with its preset and postset and the connection of the
latter with each other. In the decentralized model, activities of
F are partitioned over partitions and the deletion of an activity
a implies the update of its links with a• and •a which may
be in different partitions, and possibly with Tλ a• and •Tλ a
which are in the same partition.

To cope with this, we partition F , identify the position of
each Fi in the respective partition Pi and delete it. Indeed,
since the partitioning function is idempotent, then if F ∈ P ,
fλ(F) is a subgraph of fλ(P). In the centralized process



Change pattern Change actions
InsertP (F ′, entry, exit) ∀ Fi′ ∈ fλ(F ′), (entryi, exiti)←PositionOf(Fi′, Pi)

∀ Fi′ ∈ fλ(F ′), InsertPi (Fi′, entryi, exiti)
∀aj ∈ •F ′, update connection(aj , F ′)
∀ak ∈ F ′• update connection(F ′, ak)

DeleteP (F.entry,Fexit) ∀ Fi ∈ fλ(F ′), (entryi, exiti)←PositionOf(Fi, Pi)
∀ Fi ∈ fλ(F ′), DeletePi (entryi, exiti)
∀aj ∈ •F , ∀ak ∈ F• update connection(aj , ak)

ReplaceP (F ′,F.entry,F.exit) ∀ Fi ∈ fλ(F), (entryi, exiti)←PositionOf(Fi, Pi)
∀Fi∈ fλ(F),Fj ′∈ fλ(F ′). if Pi=Pj , UpdatePi (Fj ′, entryi, exiti)
∀Fj ′∈ fλ(F ′)) s.t. @Fi∈ fλ(F))∧pi 6= pj , Insertpj (Fj ′, entryj , exitj) where (entryj , exitj)←PositionOf(Fj ′, pj)
∀Fi∈ fλ(F)) s.t. @Fj ′∈ fλ(F ′)∧pi 6= pj , Deletepj (Fi, entryi, exiti) where (entryi, exiti)←PositionOf(Fj , pi)
∀aj ∈ •F , update connection(aj , F ′)
∀ak ∈ F• update connection(F ′, ak)

UpdateP (a, prop′) if we consider a′ as the updated activity then,
if fλ(a) 6= fλ(a′) then ReplaceP(a′, a.entry, a.exit)

TABLE II
CHANGE PROPAGATION ACTIONS

model, if •Fi (reps. Fi•) /∈F , then we update the decentralized
model linking •Fi to Fi• instead of Fi (reps. Fi• to •Fi).
Note that reduction rules may be applied to the changed parti-
tions to eliminate unnecessary control or interaction patterns.

C. Change Pattern: ReplaceP (F ′,F .entry,F .exit)
This pattern replaces an existing fragment F by a new one

F ′ in the centralized process model. To propagate this change
to the concerned partitions, we decentralize F = {Fi}i=1..l

and F ′ = {F ′i}i=1..k using fλ. According to the derived
sub-fragments, we figure out two possible scenarios for each
fragment of F and F ′; sub-fragments of F are either deleted
or replaced and sub-fragments of F ′ are either inserted or
used to replace existing sub-fragments of F . These scenarios
are combined as follows.
• If two sub-fragments Fi and F ′i refers

to the same partition Pi then we derive
ReplacePi(F ′i,Fi.entry,Fi.exit).

• If a sub-fragment Fi refers to Pi such that
no F ′i refers to the same Pi, then we derive
DeletePi(FPi.entry,Fi.exit).

• If a sub-fragment F ′i refers to Pi such that
no Fi refers to the same Pi, then we derive
InsertPi(F ′i, entry, exit). Variables entry and exit are
(•T F ′i).exit and (T F ′i•).entry respectively.

Note that an update phase is required to update the existing
links with the modified sub-fragments. This update is similar
to the Insert pattern mentioned previously. Formally, the
replacement of Fi by F ′i corresponds to the deletion of all
objects o ∈ OFi , edges e ∈ EcFi ∪ EdFi and data exchanges,
and their substitution by the objects, edges and data of F ′i.
Besides, the connection with its preset, postset, transitive
preset and transitive postset should be updated.

D. Change Pattern: UpdateP (a, prop′)

This pattern updates the properties of one activity (e.g.
its security level, its role,etc.). According to a partitioning
function fλ, the properties determine to which partition an
activity would be assigned. This leads to two scenarios; (i)
The new properties prop′ are invariant with respect to the
decentralization criterion (e.g. we change the security level
while λ is partitioning according to role), or (ii) prop′ is

variant and then the activity should be moved to another
partition. In the latter case, we can either use sequently a
Delete then Insert or simply the Replace pattern.

Table II resumes the main and simplified formal actions
to achieve the change propagation. In this table, fλ represents
the partitioning function, PositionOf returns the position of a
fragment or an activity in a partition, and update connection
updates the dependencies links between two activities or
fragments. For instance, let’s consider two activities a and b in
sequence in the centralized process model, such they belong
to different partitions after decentralization. Then, if we insert
a new activity c between them, we have to update the link
between a and b, in the decentralized setting, by two new
links (a, c) and (c, b).

E. Use case: Insurance Process Example

To have a better understanding of the change propagation
approach, we refer to the claim handling process example and
we consider the Figure 3. We remind that we want to replace
the fragment F by F ′. As we already mentioned in Section
II, only the partitions P1 and P3 are concerned by the change.
As can be seen in Figure 3, the partitioning of the fragment
F ′ leads to two fragments F ′1 and F ′2 connected by inter-
partition data and control edges (here we use the partitioning
function defined in [2]). The partitioning of the fragment F
leads to F1 which is the same as F since it contains one
activity. Since F ′1 and F1 concern the same partition P1

then we derive Replace(F ′1,F1.entry,F1.exit). Only F ′2
concerns the partition P3 and then we have to insert it in
P3. Hence, we compute the position of the insertion which is
between Receive sync3 and a5 : DS. The generated change
operation is then Insert(F ′2, Receive sync3, a5 : DS).
However, since F ′2 should be in parallel with a5, then
we enclose both of them with an AND-split/AND-join
patterns. The change propagation is translated as follows:
ReplaceP(F ′,F .entry,F .exit)⇒ReplaceP(F ′1,F1.entry,
F1.exit) ∧ InsertP(F ′2, Receive sync3, a5 : DS)).

V. EVALUATION OF THE APPROACH

This section presents the properties of our change propaga-
tor. Given a well-behaved structural update on the centralized
process model and the derived decentralized sub-processes,



fragment   Decentralization Affected   partitions   update

Fragment  F ‘

a8:S

a6:B

a9:S

d
ec

dec

d6

Partition P1

a0:ES

Send_d1,2

Send_sync1 Receive_sync2

Receive_d3,4 Send_d5

a4:Ins

Partition P3

Receive_sync1 Send_sync2 Receive_sync3 Receive_d5

a2:DS

a7:S a8:S

Send_d7 Send_sync4

receive_sync4receive_d7

a6:B

F ‘1

F ‘2

receive_sync4

receive_d7

a6:B

a7:S

Send_d7 Send_sync4

a5:DS

a8:S

Send_sync3

Propagate

Propagate

Fig. 3. Change Propagation for the Insurance Example

our approach automates the change forward propagation that
consistently transforms the update on the source into the
related target partitions, as presented in Section IV.

A. Properties and Discussion

As described in Definition 4, the process partitioning is a
total function of the type fλ : π → {πi}i=1..n that takes
a source centralized process P and produces a target set of
decentralized partitions {Pi}i=1..n. It establishes a consistency
relation, denoted C ⊆ π × {πi}i=1..n between the source and
the target process models. Since the decentralization algorithm
is idempotent, it can be applied multiple times without chang-
ing the result, then C is a total function. (P, fλ(P)) ∈ C
means that P was previously decentralized into fλ(P). Next,
we use {Pi} instead of {Pi}i=1..n. We use ∆π : π ⇀ π
and ∆π〉 : {πi} ⇀ {πi} as an abbreviation for the update
types respectively on the processes and on the partitions.
They represent the space of all partial functions describing the
changes on each of the centralized and decentralized process
models and which can be described by productions, i.e. the
change operations defined in Section IV. Now, consider a
source change δ that alters P to P ′. The problem is to
translate the well-behaved change δ of the source process into
a well-behaved changes δi on the target partitions, such that
the application of both updates results in consistent process
models. The change propagator that provides this function is
of the type pr : π×∆π ×{πi} → {∆πi}× {πi}. For P ∈ π,
δ ∈ ∆π and fλ(P) ∈ {πi}, it computes the changes on the
partitions (i.e {δi} ∈ {∆πi}) such that the updated models are
consistent (i.e. (δ(P), {δi(Pi)}) ∈ C).

In our semantics, a process and its decentralization result
(i.e., the derived partitions) are specified with graphs as
introduced in Section II. Then, a change on a process implies a
modification on the graph structure which can be expressed by
graph rewriting rules [9]. Formally, given a graph G, a graph
rewriting rule (i.e., also called production) consists of injective
morphisms of the form δG : L → R that transform a source
graph L into a target graph R. In order to apply this rewrite

rule to the initial graph G, a match m : L → G is needed to
specify which part of G is being updated. Then, the application
of δG to G via a match m for δG is uniquely defined by the
graph rewriting G ⇒δG ,m H. This rule application induces a
co-match m′ : R → H which specifies the embedding of R
in the result graph H.

The most important criteria is change propagation correct-
ness: a graph-based change propagator must return consistent
process models. In this paper, we suppose that when applying
a rewriting rule to a given graph G, it is enough to consider the
case where the morphisms that matches L to G is injective, and
that the match m is a total label-preserving, type-preserving
and root-preserving [9] graph morphism. However, to be
correctly applied, the productions must satisfy the structural
consistency of the centralized process constraints. Note that
we assume the well-behavedeness of the updates propagated
by the designers. It means that the graph production on
a centralized process is consistent with the behavioral re-
quirements, and after the production the process remains
structured. Moreover, the fragment or process partitioning
preserves by definition the well-behaved process semantic.
Secondly, a fundamental law is that the change propagation
should be deterministic: for each centralized process model
input there is a unique decentralization result. In our case,
the change propagator is modeled by a mathematical function.
Given the same pair of the centralized and its decentralized
models, and a finite set of changes (i.e., bounded within the
SESE fragment) on the source centralized process model, our
propagator produces the same changes on the target partitions.

Finally, to adapt fλ(P) to the changes induced by δ without
re-decentralizing afresh the entire updated centralized process
model, i.e. fλ(δ(P)), our change propagator enforces an in-
place synchronization between δ(P) and fλ(P) by translating
the updates δ into well-behaved target updates (δi) to get
(δi(Pi))) consistent with δ(P). The change translation is
a partial function of the type ∆π ⇀ {∆πi}. Indeed, the
propagation of δ does not affect all partitions which make the
complexity of our approach lower than the re-decentralization
of the whole process coupled with diff-based methods [9].

B. Proof of Concepts Prototype

The change propagator has been implemented and inte-
grated with our previous development of the partitioning
algorithm [2] as an extension to a BPMN Editor [10]. This
BPMN editor is based on a graph visualization library, and
it is used to model a source centralized process model, for
instance the structured process of Figure 1. After applying
our partitioning algorithm, we obtain the partitions depicted in
Figure 2 using the graph library. Moreover, we have developed
a filter that logs the process model editing operations presented
in Section IV. Actually, the specification of the entry and
the exit of a fragment is performed manually, for example
as depicted in Figure 3, but it can be easily automated. The
change propagation algorithm is implemented in the DROOLS
[11] inference engine, and it automatically computes the graph
editing operation sequence that manipulates the partitions.



VI. RELATED WORK

The topic of this paper is change in business processes.
There is a multitude of approaches dealing with related issues,
ranging from ad-hoc changes of single process instances to
evolutionary changes of the entire process description [12].

In a centralized process setting, all design and runtime
information are available (e.g., process model and state of
running process instances) and the process orchestration is
not fragmented. In this basic setting, major challenges are
correctness of the applied changes, efficient migration of
running process instances to modified process descriptions, as
well as proper inclusion of users [13], [12]. Nowadays, there
are even fully adaptive process management systems available,
e.g., AristaFlow [14]. The main difference of the approach
presented in this paper is obviously the fragmentation of the
process orchestration, hence imposing new questions when
compared to the central setting. However, many things can
be transferred from the central case such as the need for
correctness considerations and the implementation of change
patterns as proposed in [8] for decentralized process settings.

In the decentralized setting, [5] presents a formal model
for a distributed workflow change management (DWFCM) that
uses a rules topic ontology and a service ontology to support
the needed run-time flexibility. The approach aims to generate
a new workflow that is migration consistent with the original
workflow. This work is different from our proposal, since they
do not seek to propagate a pre-defined changes on a centralized
process to that on the derived partitions. In [15] the authors
present a unidirectional model incremental transformation
approach. Its central contribution is the definition and the
realization of an automatic synchronizer for managing and re-
establishing the structural consistency of heterogeneous source
and target models. Other approaches addressing flexibility and
change in decentralized or – as referred to in these papers –
distributed process settings focus on the ad-hoc modification of
single process instances at runtime [16], [17]. The difference to
our work presented is that these approaches do not physically
change the partitions but just migrate some instances.

In WS choreographies there are few approaches addressing
change and evolution . In DYCHOR [18], for example, it is
investigated how a change initiated at one partner’s side can
be propagated to the other partners of the choreography. One
similar approach is presented in [19] where a structured model
using RPST is used to model choreographies as well as the
public and private views. The authors investigated structural
and semantical propagation and dialed with the transitive
effects of the changes. At a general level, techniques for
evolving partitioned process settings exploit the knowledge
on the different partitions such that they cannot be applied
to choreographies where this knowledge is not at hand. Vice
versa, techniques for evolving choreographies (e.g., [18], [19])
could be applied to partitioned process settings, however
this would require the construction of artificial private and
public views as well as choreography model resulting in an
unnecessary overhead.

VII. CONCLUSION

In this paper, we presented an approach to propagate
changes form a centralized process to its derived decentralized
partitions. The proposed approach is based on four basic
change patterns and computes the partitions involved in the
change as well as the regions to be modified. It also translates
the initial change operation on the centralized process into
several change operations for the partitions affected by the
change. The introduced change operations can be composed
to give rise to more complex change patterns with enhanced
semantics (e.g., move of fragment, refactoring of fragments:
splitting and merging). In worst case, the propagation of
changes is equal in complexity to the re-decentralization of
the whole process (i.e. the smallest fragment that encloses the
change is equal to the process model). As a future work, we
plan to study the impacts and management of many running
versions of the partitions affected by the change.

REFERENCES

[1] R. Khalaf, “Supporting business process fragmentation while main-
taining operational semantics: a BPEL perspective,” Ph.D. dissertation,
University of Stuttgart, 2008.

[2] W. Fdhila, U. Yildiz, and C. Godart, “A flexible approach for automatic
process decentralization using dependency tables,” in ICWS, 2009, pp.
847–855.

[3] W. Fdhila, A. Baouab, K. Dahman, C. Godart, O. Perrin, and F. Charoy,
“Change propagation in decentralized composite web services,” in
CollaborateCom, 2011, pp. 508–511.

[4] W. Fdhila, M. Dumas, and C. Godart, “Optimized decentralization of
composite web services,” in CollaborateCom, 11-14 2010, pp. 1 –10.

[5] J. Vanhatalo, H. Völzer, and F. Leymann, “Faster and more focused
control-flow analysis for business process models through sese decom-
position,” in ICSOC, 2007, pp. 43–55.

[6] A. Polyvyanyy, L. Garcia-Banuelos, and M. Dumas, “Structuring acyclic
process models,” Information Systems, vol. 37, no. 6, pp. 518–538, 2012.

[7] A. P. Barros, M. Dumas, and A. H. M. ter Hofstede, “Service interaction
patterns,” in Business Process Management, 2005, pp. 302–318.

[8] B. Weber, M. Reichert, and S. Rinderle-Ma, “Change patterns and
change support features - enhancing flexibility in process-aware infor-
mation systems,” Data Knowl. Eng., vol. 66, no. 3, pp. 438–466, 2008.

[9] E. Biermann, C. Ermel, and G. Taentzer, “Precise Semantics of EMF
Model Transformations by Graph Transformation,” in MoDELS, 2008,
pp. 53–67.

[10] Yaoqiang, “Open source bpmn 2.0 modeler: bpmn.yaoqiang.org,” 2011.
[11] Drools, “labs.jboss.com/drools/,” (Feb. 2011).
[12] S. Rinderle, M. Reichert, and P. Dadam, “Correctness criteria for

dynamic changes in workflow systems - a survey,” Data Knowl. Eng.,
vol. 50, no. 1, pp. 9–34, 2004.

[13] H. Schonenberg, R. Mans, N. Russell, N. Mulyar, and W. Aalst, “Process
flexibility: A survey of contemporary approaches,” in Advances in
Enterprise Engineering I, 2008, pp. 16–30.

[14] P. Dadam and M. Reichert, “The ADEPT project: A decade of research
and development for robust and flexible process support - challenges and
achievements,” Computer Science - Research and Development, vol. 23,
no. 2, pp. 81–97, 2009.

[15] K. Dahman, F. Charoy, and C. Godart, “Towards consistency manage-
ment for a business-driven development of soa,” in EDOC, 2011.

[16] M. Reichert and T. Bauer, “Supporting ad-hoc changes in distributed
workflow management systems,” in CoopIS, 2007, pp. 150–168.

[17] V. Atluri and S. Chun, “Handling dynamic changes in decentralized
workflow execution environments,” in Database and Expert Systems
Applications, 2003, pp. 813–825.

[18] S. Rinderle, A. Wombacher, and M. Reichert, “Evolution of process
choreographies in DYCHOR,” in CoopIS, 2006, LNCS, pp. 273–290.

[19] W. Fdhila, S. Rinderle-Ma, and M. Reichert, “Change propagation in
collaborative processes scenarios,” in CollaborateCom, 2012.


