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1 Introduction

Fueled by the omnipresence of event logs in transactional information systems
(cf. WFM, ERP, CRM, SCM, and B2B systems), process mining has become
a vivid research area [5,6]. Until recently, the information in these event logs
was rarely used to analyze the underlying processes. Process mining aims
at improving this by providing techniques and tools for discovering process,
control, data, organizational, and social structures from event logs, i.e., the
basic idea of process mining is to diagnose processes by mining event logs for
knowledge. So far, process mining research has focussed on process discovery
and process improvement. In this paper, we focus on the application of process
mining to security issues.

When considering an enterprise information system, security plays a role
at different levels, i.e., from the level of UNIX processes to the level of interor-
ganizational business processes. Security policies may refer to things ranging
from cryptography and role-based access control to auditing and the four-
eyes principle. Security violations may be conducted by hackers but also by
white-collar criminals (cf. the discussions on “corporate governance” following
the Enron and Parmalat scandals). Literature on security can be split into
computer security [11] and auditing [32]. Although computer security and au-
diting are at very different levels, the absence or presence of certain behavioral
patterns may indicate security violations. Therefore, audit trails can be use-
ful. Fortunately, many enterprise information systems store relevant events in
some structured form. For example, workflow management systems typically
register the start and completion of activities [3]. ERP systems like SAP log all
transactions, e.g., users filling out forms, changing documents, etc. Business-
to-business (B2B) systems log the exchange of messages with other parties.
Call center packages but also general-purpose CRM systems log interactions
with customers. These examples show that many systems have some kind of
event log often referred to as “audit trail”, “history”, “transaction log”, etc.
[5,8,22,33]. The event log typically contains information about events refer-
ring to an activity and a case. The case (also named process instance) is the
“thing” which is being handled, e.g., a customer order, a job application, an
insurance claim, a building permit, etc. The activity (also named task, oper-
ation, action, or work-item) is some operation on the case. Typically, events
have a timestamp indicating the time of occurrence. Moreover, event logs typ-
ically also contain information on the actor, i.e., person or system component,
executing or initiating the event. We will refer to such an actor as the orig-

inator or performer. Based on this information several tools and techniques
for process mining have been developed [2,4,5,7,8,13,23,24,29,33,36].

Process mining is useful for at least two reasons. First of all, it could be
used as a tool to find out how people and/or procedures really work. Con-
sider for example processes supported by an ERP system like SAP (e.g., a
procurement process). Such a system logs all transactions but in many cases
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does not enforce a specific way of working. In such an environment, process
mining could be used to gain insight in the actual process. Another example
would be the flow of patients in a hospital. Note that in such an environ-
ment all activities are logged but information about the underlying process is
typically missing. In this context it is important to stress that management
information systems provide information about key performance indicators
like resource utilization, flow times, and service levels but not about the un-
derlying business processes (e.g., causal relations, ordering of activities, etc.).
Second, process mining could be used for Delta analysis, i.e., comparing the
actual process with some predefined process. Note that in many situations
there is a descriptive or prescriptive process model. Such a model specifies
how people and organizations are assumed/expected to work. By comparing
the descriptive or prescriptive process model with the discovered model, dis-
crepancies between both can be detected and used to improve the process.
Consider for example the so-called reference models in the context of SAP.
These models describe how the system should be used. Using process mining
it is possible to verify whether this is the case. In fact, process mining could
also be used to compare different departments/organizations using the same
ERP system.

Clearly, both aspects (discovery and delta analysis) are relevant for com-
puter security and auditing. For example, in [19] an approach for intrusion
detection is presented. This method inspects audit trails and uses fixed-length
patterns to distinguish self (i.e., normal process execution) from other (i.e.,
a potential security violation). In [37] this is extended to variable length pat-
terns. Unfortunately, approaches such as [19,37] do not consider the process
structure and are unable to detect parallelism and causality. Therefore, we
explore the concept of process mining and one algorithm in particular (the
α-algorithm, [7]) in the context of security.

The remainder of this paper is organized as follows. Section 2 introduces
the concept of process mining. Section 3 introduces the basic notation and
presents the basic α-algorithm. Then the paper focuses on two problems:
Detecting Anomalous Process Executions (Section 4) and Checking Process

Conformance (Section 5). Section 6 provides some related work. Finally,
Section 7 concludes the paper.

2 Process Mining: An overview

The goal of process mining is to extract information about processes from
transaction logs [5]. We assume that it is possible to record events such that
(i) each event refers to an activity (i.e., a well-defined step in the process), (ii)
each event refers to a case (i.e., a process instance), (iii) each event can have a
performer also referred to as originator (the actor executing or initiating the
activity), and (iv) events have a timestamp and are totally ordered. Table 1
shows an example of a log involving 19 events, 5 activities, and 6 originators. In
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case id activity id originator timestamp

case 1 activity A John 9-3-2004:15.01

case 2 activity A John 9-3-2004:15.12

case 3 activity A Sue 9-3-2004:16.03

case 3 activity B Carol 9-3-2004:16.07

case 1 activity B Mike 9-3-2004:18.25

case 1 activity C John 10-3-2004:9.23

case 2 activity C Mike 10-3-2004:10.34

case 4 activity A Sue 10-3-2004:10.35

case 2 activity B John 10-3-2004:12.34

case 2 activity D Pete 10-3-2004:12.50

case 5 activity A Sue 10-3-2004:13.05

case 4 activity C Carol 11-3-2004:10.12

case 1 activity D Pete 11-3-2004:10.14

case 3 activity C Sue 11-3-2004:10.44

case 3 activity D Pete 11-3-2004:11.03

case 4 activity B Sue 11-3-2004:11.18

case 5 activity E Clare 11-3-2004:12.22

case 5 activity D Clare 11-3-2004:14.34

case 4 activity D Pete 11-3-2004:15.56

Table 1
An event log (audit trail).

addition to the information shown in this table, some event logs contain more
information on the case itself, i.e., data elements referring to properties of the
case. For example, the case handling system FLOWer logs every modification
of some data element.

Event logs 4 such as the one shown in Table 1 are used as the starting
point for mining. We distinguish three different perspectives: (1) the process
perspective, (2) the organizational perspective and (3) the case perspective.
The process perspective focuses on the control-flow, i.e., the ordering of activ-
ities. The goal of mining this perspective is to find a good characterization of

4 In the context of security, event logs should be interpreted as audit trails.
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all possible paths, e.g., expressed in terms of a Petri net [31] or Event-driven
Process Chain (EPC) [24,25]. The organizational perspective focuses on the
originator field, i.e., which performers are involved and how are they related.
The goal is to either structure the organization by classifying people in terms
of roles and organizational units or to show relation between individual per-
formers (i.e., build a social network [9,10,12,16,20,21,28,30,34,35]). The case

perspective focuses on properties of cases. Cases can be characterized by their
path in the process or by the originators working on a case. However, cases
can also be characterized by the values of the corresponding data elements.
For example, if a case represent a replenishment order it is interesting to know
the supplier or the number of products ordered.

A


AND

-split


B


C


AND

-join


D


E


(a) The control-flow structure expressed in terms of a Petri net.


(b) The organizational structure expressed in

terms of a activity-role-performer diagram.
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 Carol
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 Clare


role X
 role Y
 role Z
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(c) A sociogram based on transfer of work.


Fig. 1. Some mining results for the process perspective (a) and organizational (b
and c) perspective based on the event log shown in Table 1.

The process perspective is concerned with the “How?” question, the orga-
nizational perspective is concerned with the “Who?” question, and the case
perspective is concerned with the “What?” question. To illustrate the first
two consider Figure 1. The log shown in Table 1 contains information about
five cases (i.e., process instances). The log shows that for four cases (1, 2, 3,
and 4) the activities A, B, C, and D have been executed. For the fifth case
only three activities are executed: activities A, E, and D. Each case starts
with the execution of A and ends with the execution of D. If activity B is
executed, then also activity C is executed. However, for some cases activity C
is executed before activity B. Based on the information shown in Table 1 and
by making some assumptions about the completeness of the log (i.e., assum-
ing that the cases are representative and a sufficient large subset of possible
behaviors is observed), we can deduce the process model shown in Figure 1(a).
The model is represented in terms of a Petri net [31]. The Petri net starts
with activity A and finishes with activity D. These activities are represented
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by transitions. After executing A there is a choice between either executing
B and C in parallel or just executing activity E. To execute B and C in paral-
lel two non-observable activities (AND-split and AND-join) have been added.
These activities have been added for routing purposes only and are not present
in the event log. Note that for this example we assume that two activities are
in parallel if they appear in any order. By distinguishing between start events
and complete events for activities it is possible to explicitly detect parallelism.

Figure 1(a) does not show any information about the organization, i.e.,
it does not use any information on the people executing activities. However,
Table 1 shows information about the performers. For example, we can deduce
that activity A is executed by either John or Sue, activity B is executed by
John, Sue, Mike or Carol, C is executed by John, Sue, Mike or Carol, D is
executed by Pete or Clare, and E is executed by Clare. We could indicate this
information in Figure 1(a). The information could also be used to “guess”
or “discover” organizational structures. For example, a guess could be that
there are three roles: X, Y, and Z. For the execution of A role X is required
and John and Sue have this role. For the execution of B and C role Y is
required and John, Sue, Mike and Carol have this role. For the execution
of D and E role Z is required and Pete and Clare have this role. For five
cases these choices may seem arbitrary but for larger data sets such inferences
capture the dominant roles in an organization. The resulting “activity-role-
performer diagram” is shown in Figure 1(b). The three “discovered” roles link
activities to performers. Figure 1(c) shows another view on the organization
based on the transfer of work from one individual to another, i.e., not focus
on the relation between the process and individuals but on relations among
individuals (or groups of individuals). Consider for example Table 1. Although
Carol and Mike can execute the same activities (B and C), Mike is always
working with John (cases 1 and 2) and Carol is always working with Sue
(cases 3 and 4). Probably Carol and Mike have the same role but based on
the small sample shown in Table 1 it seems that John is not working with
Carol and Sue is not working with Mike. 5 These examples show that the
event log can be used to derive relations between performers of activities, thus
resulting in a sociogram. For example, it is possible to generate a sociogram
based on the transfers of work from one individual to another as is shown
in Figure 1(c). Each node represents one of the six performers and each
arc represents that there has been a transfer of work from one individual to
another. The definition of “transfer of work from A to B” is based on whether
for the same case an activity executed by A is directly followed by an activity
executed by B. For example, both in case 1 and 2 there is a transfer from
John to Mike. Figure 1(c) does not show frequencies. However, for analysis
purposes these frequencies can be added. The arc from John to Mike would

5 Clearly the number of events in Table 1 is too small to establish these assumptions
accurately. However, for the sake of argument we assume that the things that did not
happen will never happen.
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then have weight 2. Typically, we do not use absolute frequencies but weighted
frequencies to get relative values between 0 and 1. Figure 1(c) shows that work
is transferred to Pete but not vice versa. Mike only interacts with John and
Carol only interacts with Sue. Clare is the only person transferring work to
herself.

Besides the “How?” and “Who?” question (i.e., the process and organi-
zation perspectives), there is the case perspective that is concerned with the
“What?” question. Figure 1 does not address this. In fact, focusing on the
case perspective is most interesting when also data elements are logged but
these are not listed in Table 1. The case perspective looks at the case as a
whole and tries to establish relations between the various properties of a case.
Note that some of the properties may refer to the activities being executed,
the performers working on the case, and the values of various data elements
linked to the case. Using clustering algorithms it would for example be possi-
ble to show a positive correlation between the size of an order or its handling
time and the involvement of specific people.

Orthogonal to the three perspectives (process, organization, and case), the
result of a mining effort may refer to logical issues and/or performance issues.
For example, process mining can focus on the logical structure of the process
model (e.g., the Petri net shown in Figure 1(a)) or on performance issues such
as flow time. For mining the organizational perspectives, the emphasis can be
on the roles or the social network (cf. Figure 1(b) and (c)) or on the utilization
of performers or execution frequencies.

To address the three perspectives and the logical and performance issues
we have developed a set of tools including EMiT [2], Thumb [36], and MinSoN
[4]. These tools share a common XML format. For more details we refer to
http://www.processmining.org.

3 WF-nets and the α-Algorithm

This section contains the main definitions used in the α-algorithm. For more
information on the α-algorithm and its supporting definitions the reader is
referred to [7]. We assume some basic knowledge of Petri nets. Readers
not familiar with basic concepts such as (P, T, F ) as a representation for a
Petri net, the firing rule, firing sequences, preset •x, postset x•, boundedness,
liveness, reachability, etc. are referred to [1,14,31].

3.1 Workflow Nets

Before introducing the α-algorithm we briefly discuss a subclass of Petri nets
called a WorkFlow nets (WF-nets). This subclass is tailored towards modeling
the control-flow dimension of a workflow 6 or any other case driven process,

6 Note that we use the words workflow and process interchangeably.
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e.g., logging onto a system. It should be noted that a WF-net specifies the
dynamic behavior of a single case in isolation [1].

Definition 3.1 [Workflow nets] Let N = (P, T, F ) be a Petri net and t̄ a
fresh identifier not in P ∪ T . N is a workflow net (WF-net) iff:

(i) object creation: P contains an input place i such that •i = ∅,
(ii) object completion: P contains an output place o such that o• = ∅,
(iii) connectedness: N̄ = (P, T ∪{t̄}, F ∪{(o, t̄), (t̄, i)}) is strongly connected,

The Petri net shown in Figure 1 is a WF-net. Note that although the net
is not strongly connected, the short-circuited net with transition t̄ is strongly
connected. Even if a net meets all the syntactical requirements stated in Def-
inition 3.1, the corresponding process may exhibit errors such as deadlocks,
tasks which can never become active, livelocks, garbage being left in the pro-
cess after termination, etc. Therefore, we define the following correctness
criterion.

Definition 3.2 [Sound] Let N = (P, T, F ) be a WF-net with input place i

and output place o. N is sound iff:

(i) safeness: (N, [i]) is safe,
(ii) proper completion: for any marking s ∈ [N, [i]〉, o ∈ s implies s = [o],
(iii) option to complete: for any marking s ∈ [N, [i]〉, [o] ∈ [N, s〉, and
(iv) absence of dead tasks: (N, [i]) contains no dead transitions.

The set of all sound WF-nets is denoted W .

The WF-net shown in Figure 1 is sound. Soundness can be verified using
standard Petri-net-based analysis techniques [1,3].

Most process modeling languages offer standard building blocks such as the
AND-split, AND-join, XOR-split, and XOR-join [3]. These are used to model
sequential, conditional, parallel and iterative routing. Clearly, a WF-net can
be used to specify the routing of cases, i.e., process instances. Tasks, also
referred to as activities, are modeled by transitions and causal dependencies
are modeled by places and arcs. In fact, a place corresponds to a condition

which can be used as pre- and/or post-condition for tasks. An AND-split
corresponds to a transition with two or more output places, and an AND-join
corresponds to a transition with two or more input places. XOR-splits/XOR-
joins correspond to places with multiple outgoing/ingoing arcs. Given the
close relation between tasks and transitions we use the terms interchangeably.

Our process mining research aims at rediscovering WF-nets from event
logs. However, not all places in sound WF-nets can be detected. For example
places may be implicit which means that they do not affect the behavior of the
process. These places remain undetected. Therefore, we limit our investigation
to WF-nets without implicit places.

Definition 3.3 [Implicit place] Let N = (P, T, F ) be a Petri net with initial
marking s. A place p ∈ P is called implicit in (N, s) if and only if, for all

8



Van der Aalst and Medeiros

reachable markings s′ ∈ [N, s〉 and transitions t ∈ p•, s′ ≥ •t\{p} ⇒ s′ ≥ •t. 7

Figure 1 contains no implicit places. However, adding a place p connecting
transition A and D yields an implicit place. No mining algorithm is able to
detect p since the addition of the place does not change the behavior of the
net and therefore is not visible in the log.

(i)
 (ii)


Fig. 2. Constructs not allowed in SWF-nets.

For process mining it is very important that the structure of the WF-net
clearly reflects its behavior. Therefore, we also rule out the constructs shown
in Figure 2. The left construct illustrates the constraint that choice and syn-
chronization should never meet. If two transitions share an input place, and
therefore “fight” for the same token, they should not require synchronization.
This means that choices (places with multiple output transitions) should not
be mixed with synchronizations. The right-hand construct in Figure 2 illus-
trates the constraint that if there is a synchronization all preceding transitions
should have fired, i.e., it is not allowed to have synchronizations directly pre-
ceded by an XOR-join. WF-nets which satisfy these requirements are named
structured workflow nets and are defined as:

Definition 3.4 [SWF-net] A WF-net N = (P, T, F ) is an SWF-net (Struc-
tured workflow net) if and only if:

(i) For all p ∈ P and t ∈ T with (p, t) ∈ F : |p • | > 1 implies | • t| = 1.
(ii) For all p ∈ P and t ∈ T with (p, t) ∈ F : | • t| > 1 implies | • p| = 1.
(iii) There are no implicit places.

3.2 The α-Algorithm

The starting point for process mining is the event log. A log is a set of traces.
Event traces and logs are defined as:

Definition 3.5 [Event trace, event log] Let T be a set of tasks. σ ∈ T ∗ is an
event trace and W ∈ P(T ∗) is an event log. 8

7 [N, s〉 is the set of reachable markings of net N when starting in marking s, p• is the set
of output transitions of p, •t is the set of input places of t, and ≥ is the standard ordering
relation on multisets.
8 T ∗ is the set of all sequences that are composed of zero of more tasks from T . P(T ∗) is
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From an event log, ordering relations between tasks can be inferred. In the
case of the α-algorithm, every two tasks in the event log must have one of the
following four ordering relations: >W (follows), →W (causal), ‖W (parallel)
and #W (unrelated). These ordering relations are extracted based on local
information in the event traces. The ordering relations are defined as:

Definition 3.6 [Log-based ordering relations] Let W be an event log over T ,
i.e., W ∈ P(T ∗). Let a, b ∈ T :

• a >W b if and only if there is a trace σ = t1t2t3 . . . tn−1 and i ∈ {1, . . . , n−2}
such that σ ∈ W and ti = a and ti+1 = b,

• a →W b if and only if a >W b and b 6>W a,
• a#W b if and only if a 6>W b and b 6>W a, and
• a‖W b if and only if a >W b and b >W a.

To ensure the event log contains the minimal amount of information necessary
to mine the process, the notion of log completeness is defined as:

Definition 3.7 [Complete event log] Let N = (P, T, F ) be a sound WF-net,
i.e., N ∈ W . W is an event log of N if and only if W ∈ P(T ∗) and every
trace σ ∈ W is a firing sequence of N starting in state [i] and ending in state
[o], i.e., (N, [i])[σ〉(N, [o]). W is a complete event log of N if and only if (1)
for any event log W ′ of N : >W ′⊆>W , and (2) for any t ∈ T there is a σ ∈ W

such that t ∈ σ.

For Figure 1, a possible complete event log W is {ABCD,ACBD,AED}.
From this complete log, the following ordering relations are inferred:

• (follows) A >W B, A >W C, A >W E, B >W C, B >W D, C >W B,
C >W D and E >W D.

• (causal) A →W B, A →W C, A →W E, B →W D, C →W D and E →W D.

• (parallel) B‖W C and C‖W B.

Now we can give the formal definition of the α-algorithm followed by a
more intuitive explanation.

Definition 3.8 [Mining algorithm α] Let W be an event log over T . The
α(W ) is defined as follows.

(i) TW = {t ∈ T | ∃σ∈W t ∈ σ},
(ii) TI = {t ∈ T | ∃σ∈W t = first(σ)},
(iii) TO = {t ∈ T | ∃σ∈W t = last(σ)},
(iv) XW = {(A,B) | A ⊆ TW ∧ B ⊆ TW ∧ ∀a∈A∀b∈Ba →W b ∧

∀a1,a2∈Aa1#W a2 ∧ ∀b1,b2∈Bb1#W b2},
(v) YW = {(A,B) ∈ XW | ∀(A′,B′)∈XW

A ⊆ A′ ∧ B ⊆ B′ =⇒ (A,B) =
(A′, B′)},

(vi) PW = {p(A,B) | (A,B) ∈ YW} ∪ {iW , oW},

the powerset of T ∗, i.e., W ⊆ T ∗.
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(vii) FW = {(a, p(A,B)) | (A,B) ∈ YW ∧ a ∈ A} ∪ {(p(A,B), b) | (A,B) ∈
YW ∧ b ∈ B} ∪ {(iW , t) | t ∈ TI} ∪ {(t, oW ) | t ∈ TO}, and

(viii) α(W ) = (PW , TW , FW ).

The α-algorithm works as follows. First, it examines the event traces and
(Step 1) creates the set of transitions (TW ) in the process, (Step 2) the set
of output transitions (TI) of the source place , and (Step 3) the set of the
input transitions (TO) of the sink place 9 . In steps 4 and 5, the α-algorithm
creates sets (XW and YW , respectively) that are used to define the places of the
discovered WF-net. In Step 4, the α-algorithm discovers which transitions are
causally related. Thus, for each tuple (A,B) in XW , each transition in set A

causally relates to all transitions in set B, and no transitions within A (or B)
follow each other in some firing sequence. These constraints to the elements in
sets A and B allow the correct mining of AND-split/join and XOR-split/join
constructs. Note that the XOR-split/join requires the fusion of places. In
Step 5, the α-algorithm refines set XW by taking only the largest elements
with respect to set inclusion. In fact, Step 5 establishes the exact amount
of places the discovered net has (excluding the source place iW and the sink
place oW ). The places are created in Step 6 and connected to their respective
input/output transitions in Step 7. The discovered WF-net is returned in Step
8. Figure 3 shows the result of applying the α-algorithm to the log shown in
Table 1, i.e. W = {ABCD,ACBD,AED}. Note that the α-algorithm is not
able to discover the AND-split and AND-join shown in Figure 1 (these are
not in the log), but is still able to construct an equivalent WF-net.

A


B


C


D
E


Fig. 3. The WF-net discovered by the α-algorithm (based on Table 1).

Finally, we define what it means for a WF-net to be rediscovered and
roughly characterize the class of processes for which the α-algorithm works
correctly.

Definition 3.9 [Ability to rediscover] Let N = (P, T, F ) be a sound WF-net,
i.e., N ∈ W , and let α be a mining algorithm which maps event logs of N

onto sound WF-nets, i.e., α : P(T ∗) → W . If for any complete event log W

of N the mining algorithm returns N (modulo renaming of places), then α is
able to rediscover N .

9 In a WF-net, the source place i has no input transitions and the sink place o has no
output transitions.

11



Van der Aalst and Medeiros

Theorem 3.10 Let N = (P, T, F ) be a sound SWF-net and let W be a com-

plete event log of N . If for all a, b ∈ T a • ∩ • b = ∅ or b • ∩ • a = ∅, then

α(W ) = N modulo renaming of places.

Note that no mining algorithm is able to find names of places. Therefore, we
ignore place names, i.e., α is able to rediscover N if and only if α(W ) = N

modulo renaming of places. Also note the requirement not allowing “short
loops”. Using the refinement described in [27] this additional requirement can
be avoided.

4 Detecting Anomalous Process Executions

In Subsection 3.2, we presented how the α-algorithm can mine the cases in
Table 1, and discover a process (see Figure 3) that describes all possible
behaviors. A similar reasoning holds for security issues if we consider the
event logs to be audit trails, and the cases as e.g. session ids. In this section
we show (i) how to use the α-algorithm to discover the acceptable or normal
behavior in systems and (ii) how to use the discovered net to detect undesired
behavior.

The α-algorithm discovers a net that models all acceptable behavior when-
ever the complete log given as input has only acceptable audit trails and the
discovered net is a sound WF-net. For example, imagine a website that is used
to sell products. Assume every user in this website has a shopping basket that
can be edited at any time. If the shopping basket contains products when the
user leaves the website, the user basket’s status is saved and is retrieved when
the user enters the website again. Possible user actions are described by the
WF-net shown in Figure 4. Now, assume we do not know the net in Figure 4,
but we do have a complete log of acceptable audit trails. For instance, let this
audit log be WOK = {“Enter, Select Product, Add to Basket, Cancel Order”,
“Enter, Select Product, Remove from Basket, Cancel”, “Enter, Select Product,

Add to Basket, Continue Shopping, Select Product, Remove from Basket, Con-

tinue Shopping, Select Product, Add to Basket, Proceed to Checkout, Fill in

Delivery Info, Fill in Payment Info, Provide Password, Process Order, Finish

Checkout”, “Enter, Select Product, Remove from Basket, Proceed to Checkout,

Fill in Payment Info, Fill in Delivery Info, Provide Password, Process Order,

Finish Checkout”}. Given WOK as input, the α-algorithm discovers the net
shown in Figure 4.

Once the net is discovered, the conformance of every new audit trail can
be verified by playing the “token game”. Note that anomalous audit trails
do not correspond to possible firing sequences in the “token game” for the
discovered net. Furthermore, the “token game” detects the point in which
the audit trail diverges from the normal behavior and allows also for the
real time verification of trails. For example, let us verify the new audit log
WNOK = {“Enter, Select Product, Remove from Basket, Proceed to Checkout,

Fill in Delivery Info, Fill in Payment Info, Provide Password, Process Order,
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Fig. 4. Example of a process description to buy products at a website.

Finish Checkout”, “Enter, Select Product, Remove from Basket, Proceed to

Checkout, Fill in Payment Info, Fill in Delivery Info, Process Order, Finish

Checkout”} by playing every trace in WOK in the net in Figure 4. The first
audit trail in WNOK is an acceptable one. Note that this trail is not in WOK ,
but it can be generated by the discovered net. The second trail is an anomalous
one because it does not contain the task Provide Password. By playing the
“token game”, we see that two tokens get stuck in the input places of Provide

Password. In other words, the “token game” explicitly shows the point where
the anomalous behavior happened. The EMiT tool [15] supports the “token
game” and indicates deadlocks and remaining tokens.

Note that the α-algorithm correctly discovered the net in Figure 4 without
requiring the “training” log WOK to show all possible behavior (the first trace
in WNOK is not in WOK), although WOK is complete and the first trace at
WNOK fits in Figure 4. However, because the α-algorithm aims at discovering
the process perspective, it does not capture constraints that relate to data in
the system, like the maximum number of times a loop may iterate. For the
example in Figure 4, the loop can be executed an unlimited number of times
without violating security issues. Nonetheless, if the loop would correspond
to user attempts to log into the system, a maximum number of loop iterations
must be set. If this is the case, the discovered WF-net must be explicitly mod-
ified to incorporate the required data-related constraints. As a final remark,
we would like to point out that the simple idea of playing the “token game”
can also be used without applying the α-algorithm, i.e., by explicitly modeling
the process. However, given the evolving nature of systems and processes, the
α-algorithm is a useful tool to keep the “security process” up-to-date. For
example, if an audit trail “does not fit” but does not correspond to a viola-
tion, then it can be added to the event log used by the α-algorithm. Audit
trails that seemed OK, but turned out to be potential security breaches can be
removed from the log. By applying the α-algorithm to the modified event log,
a new and updated “security process” can be obtained without any modeling
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efforts.

5 Checking Process Conformance

The ordering relations can be used to check system properties. In Section 4,
a process model is derived from acceptable audit trails. The discovered net is
then used to check new audit trails. In this case, every audit trail must comply
with the process. However, sometimes security applies only to a part of the
process. For example, for the process in Figure 4, the critical security issue is
to execute the task Provide Password before Process Order. In other words,
task Provide Password should cause task Process Order. The process fragment
for this situation is construct (a) in Figure 5. This construct is mapped to the
ordering relation Provide Password→Process Order. Thus, given an audit log,
we can check if this pattern holds for the system. I.e., considering all audit
trails, we check if the ordering relations that are equivalent to the desired
pattern hold. Back to our example in Section 4 and considering an audit log
W = WOK ∪ WNOK , we do infer the relation Provide Password→WProcess

Order. Thus, we can conclude that the process described by W contains the
pattern shown in Figure 5(a).

x
 y
(a)
x  y


x


z


(b)

x  y, x  z,

and y||z


y


x


z
(d)

x  z, y  z,

and x||y


y


x


z


(c)

x  y, x  z,

and y#z


y


x


z
(e)

x  z, y  z,

and x#y


y


Fig. 5. Relating the log-based relations >W , →W , ‖W , and #W to basic Petri-net
constructs.

The approach to check process conformance verifies if a pattern holds, but
does not assure this is always the case. Full conformance can be verified by
combining this approach with the one in Section 4. The difference is that
we now play the “token game” with the subnet. By playing every event trace
in the desired pattern, we check if there is always a causal relation between
Provide Password and Process Order. Note this will not be the case for all
trails in W and the anomalous one will be detected. The main advantage of
the approach for checking process conformance is that it does not require a
complete audit log for the whole process, but only for the tasks involved in
the pattern. Figure 5 illustrates the basic patterns that can be used to build
process fragments.
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6 Related Work

The idea of process mining is not new [2,5,7,8,13,23,24,26,29,33,36] and most
techniques aim at the control-flow perspective. However, process mining is
not limited to the control-flow perspective. For example, in [4] we use process
mining techniques to construct a social network. For more information on
process mining we refer to a special issue of Computers in Industry on process
mining [6] and a survey paper [5]. In this paper, unfortunately, it is impossible
to do justice to the work done in this area.

The focus of this paper is on the α-algorithm. For more information on
the algorithm, we refer to [2,7,26,36]. In [27] one of the problems raised in [26]
is tackled (“short loops”) and should be considered as an extension of [7].

In the security domain there are related papers dealing with intrusion
detection based on audit trails [19,37]. These paper break “normal behavior”
into smaller patterns and then compare actual audit trails using these patterns.
Note that, unlike the α-algorithm, these approaches do not consider explicit
process models.

There have been many formal approaches towards security, e.g., using Petri
nets or process algebras [17,18]. Unlike our approach they typically focus on
verification of a design rather than analyzing the actual behavior.

To support our mining efforts we have developed a set of tools including
EMiT [2], Thumb [36], and MinSoN [4]. These tools share a common XML
format. For more details we refer to www.processmining.org.

7 Conclusion

In this paper, we explored the application of process mining techniques in
security. First, we introduced process mining and then we focused on one
algorithm to mine the process perspective. Then we showed the application of
this algorithm to security issues. First we discussed the detection of anomalous
process executions in the mined WF-net by playing the “token game” for
concrete cases. Then, we showed that process conformance can be checked by
comparing process fragments with the discovered WF-net.

We would like to emphasize that we consider the application of the α-
algorithm at any level of security, i.e., from low-level intrusion detection to
high-level fraud presenting. The focus on Corporate Governance and gov-
ernmental regulations such as Sarbanes-Oxley Act trigger the development of
tools to enforce and check security at the level of business processes. We
believe that organizations will increasingly need to store and monitor audit
trails. Process mining techniques such as the α-algorithm can assist in these
efforts.
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