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Abstract. Process-aware information systems support business operations as they
are typically defined in a normative process model. Often these systems do not
directly execute the process model, but provide the flexibility to deviate from the
normative model. This paper proposes a method for the monitoring control-flow
deviations during process execution. Our contribution is a formal technique to
derive monitoring queries from a process model, such that they can be directly used
in in a complex event processing environment. Furthermore, we also introduce
an approach to filter and aggregate query results to provide compact feedback on
deviations. Our techniques is applied in a case study within the IT service industry.

1 Introduction

Process-aware information systems are increasingly used to execute and control business
processes [1]. Such systems provide a more general support to process execution in
comparison to classical workflow systems as they do not necessarily need to enforce a
normative process model. This notion of process-awareness rather relates to guiding the
execution of an individual case instead of restricting the behaviour to a narrow set of
sequences. In this way, process-aware information systems often provide the flexibility
to deviate from the normative process model [2].

While the flexibility provided by process-aware information systems is often a crucial
benefit, it also raises the question in how far deviations from the normative behaviour
can be efficiently identified. For instance, a process analyst might explicitly want to
be notified in a timely manner when actions are taken on a particular case that deviate
from the standard procedure. Such reactive mechanisms are typically referred to as
process monitoring. They build on the identification of specific types of events, which
are analysed and processed to yield business-relevant insights.

In recent years, techniques for complex event processing have been introduced
for identifying non-trivial patterns in event sequences and for triggering appropriate
reactions. Such patterns are formulated as queries over event sequences. While certain
non-temporal requirements upon a process can be easily formulated as complex event
queries, e.g., a four-eyes principle on a pair of activities, it is a non-trivial problem to
encode the control flow of a normative process model as a set of event queries that
pinpoint violations. However, such queries are highly relevant, e.g., for monitoring IT
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Fig. 1. Example Lead-to-Quote process modelled in BPMN

incident resolution for which best practice process models exist, but are not enforced by
a workflow system. In this paper, we address this problem from two angles. First, we
define a technique to generate monitoring queries from a process model. To this end, we
leverage the concept of a behavioural profile. Second, we support the presentation of
the query results in such a way that root causes of a rule violation are directly visible
to the process analyst. To achieve this, we develop an approach to filter and aggregate
query results. In this way, we aim to contribute towards a better integration of process
monitoring and complex event processing techniques.

The paper is structured as follows. Section 2 introduces the formal foundations of our
approach including complex event processing and behavioural profiles. Section 3 defines
a transformation technique to generate queries from process models. Section 4 identifies
three classes of execution violations, and how they are handled to provide meaningful
feedback to the process analyst. Section 5 applies our techniques to a case study in the IT
service domain. Section 6 discusses related work, before Section 7 concludes the paper.

2 Preliminaries

This section presents preliminaries for our investigations. Section 2.1 discusses process
models. Then, Section 2.2 gives background information on complex event processing.
Finally, Section 2.3 introduces casual behavioural profiles as an abstraction of the
behaviour of a process model.

2.1 Process Models

In large organisations, process models are used to describe business operations. As
such, they formalize requirements that have to be considered during the development of
process-aware information systems [1]. Process models are also directly used to foster
process execution when a workflow engine utilizes a model to enforce the specified
behaviour. In both cases, the process model has a normative role. It precisely defines the
intended behaviour of the process.

Abstracting from differences in expressiveness and notation of common process
description languages, a process model is a graph consisting of nodes and edges. The
former represent activities and control flow routing nodes — split and merge nodes that
implement execution logic beyond simple sequencing of activities. The latter implement
the control flow structure of the process. Figure 1 depicts an example process model in
BPMN, which we use in this paper to illustrate our concepts. It depicts a Lead-to-Quote



process. The process starts with an import of contact data or with the reception of a
request for quote. In the former case, the contact details are updated. This step may be
repeated if data integrity constraints are not met. Then, the quote is prepared by first
entering prospective project details and then conducting an effort estimation, updating
the requirements, and preparing the quote template. These steps are done concurrently.
Finally, the quote is approved and submitted.

2.2 Complex Event Processing

Complex event processing (CEP) refers to technologies that support processing of real
time data that occur as events. The goal of CEP is to detect situations of interest in
real time as well as to initiate corresponding actions. The notion of an event slightly
differs throughout literature. Etzion and Niblett refer to an event as “occurrence within a
particular system or domain” [3]. Examples for such events are manifold. They can be
as simple as a sensor reading or as complex as the prediction of an supply bottleneck.

Data models for events vary between systems and application contexts. For instance,
some systems encode events as tuples while others follow an object oriented model.
Further differences exist regarding time. Events may be modelled explicitly with a
duration or only with an occurrence time stamp. Without loss of generality, we assume
events to be represented as tuples with the following structure:

event = (eventI D, casel D, activity, timeStamp, < €yq; >)

Here, eventI D is a unique identifier of an event, casel D a unique identifier for the
process instance, activity the observed activity in the process, temeStamp the time of
the completion time of the activity, and < e,,; > a collection of attribute-value pairs.

Intuitively, a CEP system acts like an inverted database. A database stores data
persistently and processes events in an ad-hoc manner. In contrast, a CEP system stores
standing queries and evaluates these queries as new event data arrives. This principle is
implemented in different systems to support real time queries over event data, e.g., [4-7]).

Queries are formulated in terms of dedicated query languages.Rule based languages
following an ECA structure and SQL-extensions are two main categories for query
language styles. A key element in many languages is the definition of patterns. A
pattern defines relations between events. Typical operations for pattern definition are
conjunction, disjunction, negation, and a sequence operator that defines a specific order
of event occurrences. Temporal constraints are supported by constructs for defining time
windows. For instance, one may define that all events in a pattern must occur within a
given time frame. Below we show a query example written in the SQL-like language of
ESPER [7]. The query matches if the activity ‘Update Contact Details’ is followed by
the activity ‘Enter Project Details’ in the same process instance.

select * from lead—to—order
[every a=ObservationEvent(a.Observation="Update Contact Details ') —>
b=ObservationEvent(b. Observation="Enter Project Details ’,b.caseID=a.caselD)]

In this paper, we use a more abstract notation for queries. The notation focuses on the
query parts that are relevant to our approach and is intended to support an intuitive
understanding. With a small letter, we denote the atomic query for events reflecting



the execution of the corresponding activity. A query a evaluates true, if activity a was
completed. For simplicity, we say that ‘an event a occurred’. With an expression in
capital letters we denote sets of atomic event queries. Such an expression evaluates
true, if an any atomic query in the set evaluates to true. We build more complex queries
using the operators and, not, seq, and within. A query and(a,b) is true if events a
and b occurred, not(a) is true until a occurs, and seq(a, b) is true if @ and b occur the
designated order. Constraints on event attributes are not explicitly modelled. However,
we implicitly assume that all queries are limited to events with the same casel D. This
ensures that all matched events belong to the same process instance. To constrain time,
we use the operator within. It takes a query ¢ and a time window ¢ as input and evaluates
to true if ¢ is true when constrained to events that are not more than ¢ apart in time.
Conceptually, the defined operators can be evaluated by an extended automaton, in
which state transitions correspond to the occurrence of events [8]. As CEP engines typi-
cally implement this model, our approach is not limited to any specific implementation.

2.3 Causal Behavioural Profiles

Our approach to monitoring of process instances exploits the behavioural constraints that
are imposed by a normative process model. We use the notion of a causal behavioural
profile [9] to capture these constraints. A causal behavioural profile provides an abstrac-
tion of the behaviour defined by a process model. It captures behavioural characteristics
by relations on the level of activity pairs. The order of potential execution of activi-
ties is captured by three relations. Two activities are either in strict order, exclusive to
each other, or in interleaving order. These relations follow from the possible execution
sequences, alias traces, of the process model.
o The strict order relation, denoted by ~, holds between two activities « and y, if
= may happen before y, but not vice versa. That is, in all traces comprising both
activities, x will occur before y.
o The exclusiveness relation, denoted by +, holds for two activities, if they never
occur together in any process trace.
o The interleaving order relation, denoted by ||, holds for two activities « and y, if
x may happen before y and y may also happen before x. Interleaving order can be
interpreted as the absence of any specific order constraint for two activities.
The causal behavioural profile also comprises a co-occurrence relation, denoted by >, to
capture occurrence dependencies between activities. Co-occurrence holds between two
activities = and y, if any complete trace, from the initial to the final state of the process,
that contains activity x contains also activity y. For the activities of the model in Fig. 1,
for instance, activities a and b are exclusive. Activities e and g are in strict order. The
concurrent execution of activities i and 7 yields interleaving order in the behavioural
profile. As a self-relation, activities show either exclusiveness (if they are executed at
most once, e.g., a + a) or interleaving order (if they may be repeated, e.g., d||d). As an
example for co-occurrence, we observe that every trace containing a also contains d, but
not vice versa, a > d and d }% a. Causal behavioural profiles are computed efficiently
for process models as the one shown in Fig. 1, see [9, 10].

The causal behavioural profile is a behavioural abstraction. For instance, cardinalities
of activity execution are not captured. Still, findings from experiments with process



variants [10] suggest that these profiles capture a significant share of the behavioural char-
acteristics of a process model. Although our approach builds on the causal behavioural
profile, for brevity, we use the term behavioural profile in the remainder of this paper.

3 Monitoring based on Event Queries

This section introduces our approach to run-time monitoring of process execution based
on event queries. We describe the overall idea along with an architecture proposal in
Section 3.1. Then, we turn the focus on the actual query derivation in Section 3.2.

3.1 Architecture

Our approach facilitates the automatic generation of monitoring queries from process
models as well as preprocessing of the query results for presentation. Conceptually this
involves four main steps:

1. Extraction of behavioural profiles from process models
2. Generation of complex event queries

3. Running queries over process events

4. Applying filters and aggregates on detected deviations

Figure 2 provides an overview
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Further, we assume the avail-
ability of process models as in-
put. From these process models we extract behavioural profiles to obtain behavioural
constraints on event occurrences in model conformant process instances. Given the
behavioural profiles, we generate complex event queries that target violations on a fine
grained level and reveal where a process instance deviates from the model.

To run the queries, we assume the utilization of a CEP engine such as provided
in [4-7]. However, our approach abstracts from specific implementation details. Instead,
we describe our solution using general concepts that can be realised in different systems.

Fig. 2. Architecture overview



The CEP engine continuously receives the process events. It then matches the events
against the monitoring queries to detect deviations from the model. The system can
create an alert for each detected deviation. We enhance this mechanism with introduce
filters and aggregation to condense reports and avoid information overload.

3.2 Derivation of Event Queries from Process Models

To leverage the information provided by the behavioural profile of a process model for
monitoring, we generate a set of event queries from the profile. These queries follow
directly from the relations of the behavioural profile and relate to exclusiveness, order,
and co-occurrence constraints. As discussed in Section 2.3, interleaving order between
two activities can be seen as the absence of an ordering constraint. Therefore, there is no
need to consider this relation when monitoring the accuracy of process execution.

Exclusiveness: Exclusiveness between activities as defined by the relation of the be-
havioural profile has to be respected in the events signalling activity execution. To
identify violations to these constraints, a query matches joint execution of two exclu-
sive activities. Note that the exclusiveness relation also indicates whether an activity is
executed at most once (exclusiveness as a self-relation). Given the behavioural profile
B = {~,+,||,>} of a process model, we define the exclusiveness query set as follows.

Q. = U and(ay, az).

(a1,a2)€+

For the model depicted in Fig. 1, monitoring exclusiveness comprises the following
queries, Q1 = and(a, a)Uand(a,b)Uand(b, a)Uand(a,c)U...Uand(e, f). Mirrored
terms such as and(a, b) and and(b, a) have the same semantics. We assume those to be
filtered by optimisation techniques of the query processing.

The described query patterns are sufficient for detecting exclusiveness violations.
However, they provide no means to discard partial query results if no violations occur.
To optimise resource utilization, we present modified versions of the query generation
that incorporate termination in correct process instances. We consider two options for
terminating non matching queries. One option is using timeouts. Setting an appropriate
timeout ¢ requires background knowledge on the monitored processes and should be
defined by a domain expert. Another option is to incorporate the set of terminating
activities EN D of the process. This option solely relies on the process model. We
construct an optimised query as follows.

Qtoptimised = U within(and(and(ay, az),not(END \ {a1,a2})),t).
(a1,a2)e+

Here, not(EN D) holds true if no event in the set EN D occurred with EN D being the
set of events representing terminating activities. The operator within(a,t) limits the
evaluation of term a to the relative time frame ¢. That is, a is only evaluated for events
that are not more than ¢ apart in time. Figure 3 illustrates the implementation of this
query based on an extended automata following on [12].
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Order: Violations of the order of activity execution is queried for with an order query
set. It matches pairs of activities for which the order of execution is not in line with
the behavioural profile. Given the behavioural profile B = {~+, +, ||, >} of a process
model, we define this set of queries as

Q. = U seq(az,ar).

(a1,a2)€E~

For the model in Fig. 1, the order query set contains the following queries, Q.. =
seq(d,a) U seq(e,a) U seq(g,a) V ...Useq(l, k).

Similar to queries for exclusiveness, queries for order violation do not match in cor-
rect process instances. For optimisation we again incorporate constructs for termination
based on timeouts ¢ or terminating activities EN D of the process.

Qsoptimised = U within(and(seq(az, a1),not(END \ {a1,az2})),t).

(a1,a2)E~

Co-occurrence: For exclusiveness and order of activity execution, the respective queries
follow directly from the relations of the behavioural profile. Co-occurrence constraints,
in turn, cannot be verified in this way. Co-occurrence constraints are violated not by
the presence of a certain activity execution, but by its absence. Therefore, a constraint
violation materialises only at the completion of a process instance. Only then it becomes
visible which activities are missing the observed execution sequence even though they
should have been executed. We construct a corresponding query set as follows:

Q>>detection = U and(and(a'lv END)? nOt(GQ))'
(al,a2)€>>

For a running process instance, the question whether an activity is missing cannot be
answered definitely. Nevertheless, the strict order relation can be exploited to identify
states of a process instance, which may evolve into a co-occurrence constraint violation.
Taking up the idea of conformance measuring based on behavioural profiles [13], we
query for activities for which we deduced from the observed execution sequence that they
should have been executed already. That is, their execution is implied by a co-occurrence
constraint for one of the observed activities and they are in strict order with one of the



observed activities. As the co-occurrence constraint is not yet violated definitely, we refer
to these queries as co-occurrence warning queries. Note that, although the co-occurrence
constraint is not violated definitely when the query matches, the respective instance is
fraudulent. Even if the co-occurrence constraint is satisfied at a later stage, the instance
will show an order violation. In other words, if the co-occurrence warning query matches,
a constraint violation is detected even though it is still unclear whether the order or the
co-occurrence constraint is violated. Given the behavioural profile B = {~, +, ||, >}
of a process model, the co-occurrence warning query set is defined as follows.

Q>>warm‘ng = U and(and(al, CLg), not(ag)).
((a1,a2)€(>N~)) A ((az,a3)€~)

For the example model depicted in Fig. 1, there exist the following co-occurrence warn-
ing queries, Qs.warning = and(and(a, g), not(d)) U and(and(a, h), not(d)) U ... U
and(and(h,1),not(k)). The first term refers to the co-occurrence constraint between
activities a and d, i. e., if the contact is loaded from the CRM, the contact details have
to be updated. The execution of activity g, entering the project details, is used to judge
on the progress of the processing. The query matches, if we observe the execution of
activities a and g, but there has not been any execution of activity d. If this activity is
executed at a later stage, the co-occurrence constraint would be satisfied, whereas the
order constraint between activities d and g would be violated.

Du to the lack of space we do not provide optimised versions of the queries for
co-occurrence violations. However, optimisation can be done along the lines of the
optimisations for queries for exclusiveness and order violations.

4 Feedback on Behavioural Deviations

The queries which we derived in the previous section allow us to monitor the behaviour
of a process instance on a fine-granular level. On the downside, fine-granular queries
may result in multiple alerts when an activity is performed at an unexpected stage of
the business process. For instance, consider a sequence of activities a, d, e, which are
all exclusive to ¢, as in our example in Fig. 4. When now c is executed after the other
activities have already been completed, we obtain three alerts. The idea of the concepts
presented in this section is to filter these alerts. First, we identify the root cause for the
set of violations. A root cause refers to the responsible event occurrence, which implies
that we observe a violation at a later stage. Second, we check whether a certain violation
is an implication of an earlier violation. Sections 4.1 to 4.3 define according filtering and
reporting strategies for each of the violation classes introduced in the previous section.

4.1 Exclusiveness Violations

We first consider violations that stem from the exclusiveness monitoring query Q.. Let
o = (aj,as,...,a,) be the sequence of recorded events for a process instance and
B = {~>,+,||,>} the behavioural profile of the respective process model. Then, we
derive the set of violations V" at the time event a,, is recorded as follows.

Vi ={(az,ay) € +|ay =an N a, €0}



Fig. 4. Example process revisited

Root Cause. A single event may cause multiple exclusiveness violations. Given a
set of exclusiveness violations V", the root cause is the violation that relates to the
earliest event in the sequence of recorded events o = (a1, as, ..., a,). In this way, the
root cause refers to the earliest event that implies that the latest event would not be
allowed anymore. We define a function root to extract the root cause for the most recent
violations with respect to a,, as follows.

root(Vy") = (ag,a,) € V" suchthat V (ag,a;) € V' [z < k].

We illustrate the introduced concept for the process from Fig. 4. Assume that the
activities a and d have been executed, when we observe an event that signals the
completion of activity c, i.e., we recorded o = (a, d, ¢). The exclusiveness monitoring
query @, matches and identifies two violations, V> = {(a, ¢), (d, c)}. The violation of
exclusiveness for a and c is the root cause, since a was the first activity to complete in
the recorded event sequence, i.e., root(V3) = (a, ).

Consecutive Violation. The identification of a root cause for a set of violations
triggered by a single event is the first step to structure the feedback on violations. Once a
violation is identified, subsequent events may result in violations that logically follow
from the violations observed already. For a root cause (a, a, ), consecutive violations
(ap,aq) are characterized by the fact that (1) either a, with a, and a, with a, are
not conflicting or (2) this non-conflicting property is observed for a, with a4 and a,
with a,. Further, we have to consider the case that potentially it holds a, = a; or
ap, = ay. Consecutive violations are recorded but explicitly marked once they are
observed. Given a root cause (a5, a,) of exclusiveness violations, we define the set of
consecutive violations by a function consec.

consec(ag, ay) ={(ap, aq) € + | ((az = ap V az £ ap) A (ag = ay V ay ¥ aq))
V ((ay = ap V ay #ap) A (az = aq V az # aq))}-

Consider the process from Fig. 4 and the recorded event sequence o = {(a, d, ¢). Now
assume a subsequent recording of event e. The exclusiveness monitoring query @)
matches and we extract a set of violations V¥ = {(c, €)} with the root cause root(V}) =
(¢, e). Apparently, this violation follows directly from the violations identified when
event ¢ has been recorded, because e is expected to occur subsequent to d. This is
captured by our notion of consecutive violations for the previously identified root cause
(a,c). Since ¢ and e are expected to be exclusive and it holds a, = ¢ = a,, and a ¥ e,
we observe that (¢, e) € conseq(a, ¢). Hence, the exclusiveness violation (¢, e) would



be reported as a consecutive violation of the previous violations identified by their root
cause root(V3?) = (a,c).

Further, assume that the next recorded event is b, so that o = (a,d, ¢, e,b) and
V3 = {(a,b), (c,b)}. Then, both violations represent a situation that does not follow
logically from violations observed so far, i.e., they are non-consecutive and reported as
independent violations to the analyst. Still, the feedback is structured as we identify a
root cause as root(V?) = (a,b), since event a has occurred before event c.

4.2 Order Violations

Now, we consider violations that stem from order monitoring query Q... Let 0 =
(a1, as,...,a,) be the sequence of recorded events for a process instance and B =
{~,+,||,>>} the behavioural profile of the respective process model. Let ~+~! be the
inverse relation of the strict order relation, (a; ~ ay) < (ay ~~' a,). Then, we derive
the set of violations V! at the time event a,, is recorded as follows.

V;ri = {(az,ay) c Wfl | ay = an N Qg c 0—}

Root Cause. Also for this set of violations, it may be the case that a single event
causes multiple order violations. Given a set of order violations V., the root cause
is the violation that relates to the earliest event in the sequence of recorded events
o ={ay,as,...,a,). Again, we define a function root to extract the root cause.

root(V2) = (ag,ay) € V. suchthat V (ar,a;) € VI [z < k.

For illustration, consider the example of Fig. 4 and a sequence of recorded events
o = {a,d, h, k). Now, e is completed, which points to a violation of the order constraint
between e and h as well as between e and k. The idea is to report the earliest event in
the execution sequence, which was supposed to be executed after e. Then, the violation
root(V2) = (h, e) is the root cause, since h has been the first event in this case.
Consecutive Violation. In the same vein as for the first violation class, we also define
consecutive violations. These include violations from subsequent events that logically
follow from violations observed earlier. For a root cause (a, a, ), consecutive violations
(ap, aq) are characterized by the fact that either a, with a, and a, with a, are in strict
order, or a,, with a, and a, with a,, respectively. Taking into account that it may hold
ap = a, or a, = a,, we lift the function consec to root causes of strict order violations.
Given such a root cause (a, a, ), it is defined as follows.
consec(ay, a,) ={(ap,aq) €~ | ((az = ap V az ~ ap) A (ag = a, V ay ~ a,))

V ((ay = ap Vay ~ ap) A (az = aq Vag ~ aq))}

Consider the example of Fig. 4 and the sequence o = (a,d, h, k, ), which resulted
in 700t(V3) = (h,e). Now, g is observed, which violates the order with h and k as
monitored by the order monitoring query @)... Apparently, this violation follows from
the earlier violations. It is identified as a consecutive violation for the previous root cause
(h, e) since h is in both violations and e and g are not conflicting in terms of order, i.e.,
(h,g) € consec(h,e).Since k ~~1 g, h ~ k, and e ~ g, this also holds for the second
violation. Hence, violations (h, g) and (h, k) are reported as consecutive violations.



4.3 Occurrence Violations

Finally, we consider violations that relate to occurrence dependencies between executions
of activities. As discussed in Section 3.2, the absence of an required activity execution
materialises only once the process instance finished execution (query Qs detection)-
To indicate problematic processing in terms of potential occurrence violations, we
introduced a set of co-occurrence warning queries QQs.warning- These queries may
match repeatedly during execution of a process instance, so that we focus on filtering
violations that relate to these queries. Once again, note that the queries Qs warning
detect violations and only the type of violation (co-occurrence constraint violation or
order violation) cannot be determined definitely.

Let o = (a1, as,...,a,) be the sequence of recorded events for a process instance
and B = {~~,+, ||, >} the behavioural profile of the respective process model. Further,
let A denote the set of events related to activities of the process model. Then, we derive
the set of violations V' at the time event ay, is recorded as follows.

Ve ={(agz,ay) € (AxA)|ay=an N az €0
ANJdacAlado Nag>a A ag~a N a~ ayl}

Such a violation comprises the event that requests the presence of the missing event
along with the event signalling that the missing event should have been observed already.
This information on a violation is needed to structure the feedback for the analyst. In
contrast to exclusiveness and order violations, the actual violated constraint is not part
of the violation captured in V. We define an auxiliary function miss to characterise the
actual missing events for a violation (a, a,) € VZ at the time event a,, is recorded.

miss(az,ay) ={a € Ala¢ o N ag>a N a~ ay}.

Root Cause. Also here, a single event may cause multiple violations. Given a set of
violations V., the root cause is the violation that relates to latest event in the sequence
of recorded events 0 = (a1, as, ..., a,). By reporting the latest event, we identify the
smallest region in which an event is missing. We define root as follows.

root(VY) = (az,ay) € VL suchthat V (ay,a;) € VS [z > k.

For illustration, consider the example of Fig. 4 and assume that a sequence of events
o = {a, d) has been recorded. Now, h is completed, which points to a missing execution
of eand g, V3 = {(a, h), (d, h)} and miss(a, h) = miss(d, h) = {e, g}. The idea is to
report the latest event in the execution sequence that is triggering the violation, in our
case event d. Then, the violation for d and h is the root cause, root(V3) = (d, h).

Consecutive Violation. For a root cause (a, a, ) of occurrence violations, consecutive
violations (ay, a) are characterized by the fact that there exists an intermediate missing
event at the time event a,, is recorded which (1) resulted in the root cause, and (2) led to
a violation observed when an event a,,, is added later, m > n.

consec(ay, ay) ={(ap,aq) € (A x A) | Ta € miss(az,ay) [ap >a A a~raq]}.

Consider the sequence o = (a,d, h) for our example in Fig. 4, which resulted in
root(V3) = (d, h). Now, k is observed, which yields V4 = {(a, k), (d, k)}. For both
violations there are missing intermediate events, namely e and g, that resulted in the root
cause (d, h). Hence, (a, k) and (d, k) are reported as consecutive violations.



5 Case Study: SIMP

As an evaluation, we applied our approach in a case study. This case study builds on
a replay of real-world log data within a prototypical implementation of our approach.
In this way, we are able to draw conclusions on the number and types of detected
control-flow deviations. We also illustrate how feedback on these deviations is given.
First, Section 5.1 gives background information on the investigated business process.
Second, Section 5.2 presents the results on detected deviations.

5.1 Background

We applied our techniques to the Security Incident Management Process (SIMP), an issue
management process. This process is run in one of IBM’s global service delivery centres.
This centre provides infrastructure management and technical support to customers.
Figure 5 gives an overview of the SIMP as a BPMN diagram. The process is initiate by
creating an issue. Then, issue details may be updated and a resolution plan is created.
Subsequently, change management activities may be conducted, which may be followed
by monitoring of target dates and risk management tasks. In the mean time, a customer
extension may be conducted. Finally, a proposal to close is issued. If accepted, the issue
is closed. If rejected, either a new proposal to close the issue is created or the whole
processing starts over again.

The SIMP is standardised and documented within the respective IBM global service
delivery centre, but it is not explicitly enforced by workflow technology. Therefore,
employees may deviate from the predefined processing. The latter is tracked by a
proprietary tool, in which an employee submits the execution of a certain activity.

For the SIMP, we obtained 852 recorded execution sequences, aka cases. We analysed
the degree of conformance of these cases with the predefined behaviour shown in Fig. 5
in prior work, along with an evaluation of frequencies for particular violations [13]. Here,
we apply the techniques introduced in this paper for identifying violation classes and
providing aggregated feedback to all SIMP cases. This allows for evaluating the number
and type of detected violations in a fine-granular manner. In addition, we evaluate our
techniques for providing aggregated feedback in a real-world setting. This analysis offers
the basis to judge on the applicability of our approach for online monitoring of the SIMP.

X Reject
PTC
Proposal to
close (PTC)
Monitor target
' dates (MTD) ’

(RM)

. Customer .

Resolution
plan (RP)

Change
management (CM)

Fig. 5. BPMN model of the Security Incident Management Process (SIMP), see also [13]

details (ID)




Table 1. Identified violations in 852 cases of the SIMP

Exclusiveness Order Occurrence  All Violations
Overall 194 173 247 614
Avg per Case (StDev) 0.23 (0.36) 0.20 (0.40) 0.29 (0.49) 0.72 (1.10)
Max per Case 6 74 4 77

# Fraudulent Cases (%) 179 (21.01%) 7 (0.82%) 134 (15.73%) 202 (23.71%)

5.2 Results

As a first step, we evaluated how often the queries derived from the process model match
for the 852 cases of the SIMP. Table 1 gives a summary of the results. We detected
614 constraint violations in all cases. On average, a case violates 0.72 behavioural
constraints. Further, we see that the violations are rather homogeneously distributed
over the three violation classes. However, when evaluating how the different types
of violations are distributed over the cases, we observe differences. Exclusiveness
and occurrence constraint violations typically appear isolated, at most 6 or 4 of such
constraints are violated within a single case and the violations are spread over 179 or 134
cases, respectively. Order constraints, in turn, are observed in solely 7 cases. However,
those cases violate a large number of constraints, at most 74.

The latter clearly indicates a need to
provide the feedback in a structured way. 100
To this end, we also evaluated our tech- 80 S S_
niques for filtering consecutive violations. xx
Figure 6 illustrates the percentage of vio-
lations that are filtered relative to the num-
ber of detected violations for a certain
case. Clearly, for those cases that show a
large number of violations, the vast ma- Number of Detected Violations
jority of violations is reported as consec-
utive violations. Hence, a process analyst
is faced only with a very small number of
root causes for each case.

Finally, we turn the focus on the SIMP
case with the most violations to illustrate
our findings. This case showed 77 violations, 74 of them relate to order constraints.
Analysis of the case reveals that after an issue has been processed, its close is proposed
and then conducted, see also Fig. 5. However, the issue seems to have been reopened,
which led to the execution of various activities, e.g., a customer extensions have been
conducted. All these executions violate order constraints. Still, the 74 order violations
are traced back to three root causes, so that 95.95% of the violations are filtered. This
illustrates that our approach is able to identify significant problems during processing
and that feedback is given in a structured and aggregated manner.
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Percentage of Filtered Violations

0 20 40 60 80

Fig. 6. Percentage of filtered violations rela-
tive to the number of detected violations for
single cases of the SIMP



6 Related Work

The research presented in this paper relates to work on business process monitoring,
complex event processing, and transactional workflows.

The monitoring of workflows based on a common interface had been early recognized
by the workflow management coalition as an important issue [14], though there did not
emerge a standard which was accepted by vendors. Several works discuss requirements
upon a data format for audit trails [15] and process log data [16], and how these process-
related event logs can be analysed a posteriori. Different approaches have been developed
for measuring conformance of logs with process models [17] and for identifying root
causes for deviation from normative behaviour [13]. Only recently, this research area has
progressed towards online auditing [18] and monitoring of choreographies [19]. This
paper complements these works with a approach to immediately feed back cases of
non-conformance in a compact and filtered way.

The approach presented in this paper also relates to the research domain of com-
plex event processing. Several research projects addressed different aspects of event
processing technologies [20-23]. Several works in this area provide solutions for query
optimisation, e.g. considering characteristics of wireless sensor networks [23, 24], avail-
ability of devices [25], resource consumption [26], or size of intermediate result sets [27].
Up until now, research that combines complex event processing and process management
is scarce and only focused on query optimisation [28]. In this regard, our contribution is
an approach to integrate process monitoring with complex event processing technology.

In this paper, we consider a normative process model, which has to be monitored
for behavioural conformance of event sequences. This problem is closely related to
general properties of transactional workflows, which guarantee the adherence to specified
behaviour by moving back to a consistent state when undesirable event sequences occur
(see [29-32]). Transactional concepts defined for workflows have been adopted in
web services technologies [33, 34] and incorporated in industry standard such as WS-
AtomicTransaction [35]. In particular, transactional properties have to be considered for
service composition [36]. From the perspective of these works, our approach provides
immediate feedback on events that need to be rolled back or compensated.

7 Conclusion

In this paper, we have addressed the problem of monitoring conformance of execution
sequences with normative process models in a complex event processing environment.
Our contribution is a technique to generate queries from a process model based on its
behavioural profile. Furthermore, we present query results in a compact way such that
root causes of a violation are directly visible to the process analyst. Our approach has
been implemented and evaluated in a case study in the IT service industry. The results
demonstrate that even large sets of violations can be traced back to a small number of
root causes.

In future research, we aim to enhance our techniques in two directions. Behavioural
profiles provide only an abstracted view on constraints within loops. We are currently
studying concepts, first, for capturing the fact that certain activities have to be executed



before an activity can be repeated. Second, behavioural profiles currently miss a notion
of cardinality constraint, when for instance an activity a has to be repeated exactly as
many times as b is executed. Beyond these conceptual challenges, we plan to conduct
additional case studies with industry partners to further investigate the efficiency of our
filtering techniques for different types of processes.
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