

MASTERARBEIT / MASTER’S THESIS

Titel der Masterarbeit / Title of the Master‘s Thesis

„N2SkyC - Cloud Container-based Problem Solving Envi-
ronment“

verfasst von / submitted by

BSc Aliaksandr Adamenko

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Diplom-Ingenieur (Dipl.-Ing.)

Wien, 2018 / Vienna 2018

Studienkennzahl lt. Studienblatt /
degree programme code as it appears on
the student record sheet:

A 066 926

Studienrichtung lt. Studienblatt /
degree programme as it appears on
the student record sheet:

 Informatik - Masterstudium Wirtschaftsinformatik

Betreut von / Supervisor:

Univ.-Prof. Dipl.-Ing. Dr. Erich Schikuta

Declaration of Authorship

I hereby declare that this master thesis is my own unaided work. It is

being submitted for the degree of Dipl.-Ing. in Business Informatics, at the

University of Vienna. It has not been submitted before for any other degree

or examination at any other university.

Vienna, March 2018

Signature:

ALIAKSANDR ADAMENKO

Acknowledgments

The projects Architect is Aliaksandr Adamenko. My special thanks go

to my scientific advisor Univ.-Prof. Dipl.-Ing. Dr. Erich Schikuta (Scientific

Advisor) and to Andrii Fedorenko (Front-end Architect) for their assistance. I

would also like to thank my wife for supporting me during the years of study.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Terms and Definitions . 3

1.3 Related Work . 4

2 The N2SkyC Architecture 8

2.1 Current Architecture Analysis 8

2.1.1 General Scope . 8

2.2 Redesign Motivation . 11

2.2.1 Scaling and Architecture 11

2.2.2 Microservices Architecture 12

2.2.3 Microservices Infrastructure 13

2.2.4 Component Decomposition Guidelines 16

3 Technological Stack 20

3.1 Cloud Infrastructure - OpenStack 21

3.2 Virtualization Technologies . 25

3.2.1 Traditional Virtualization 26

3.2.2 Container-based Virtualization 27

3.2.3 Docker Platform . 30

3.3 Orchestration Tool . 36

3.3.1 Cloudify Platform . 39

4 Components and Topology Description 41

4.1 Business Module . 42

4.2 Monitoring Module . 43

4.3 Infrastructure Module . 44

4.4 Computational Module . 46

4.5 UI Module . 48

5 Development Guide 50

5.1 Cloud Infrastructure Guide . 50

5.1.1 Environment Setup . 50

5.1.2 DevStack Manual Installation 50

5.1.3 DevStack - Virtual Environment 54

5.2 Orchestration Management Guide 59

5.3 Neural Network Development Guide 62

6 Conclusions and Outlook 71

6.1 Future Work . 72

A Abstract English 80

B Abstract German 81

1 Introduction

1.1 Motivation

Neural networks and deep learning era approaches these technologies became

more and more popular in the last years. There is a clear trend, that these

domains will continue to grow. We observe that the theoretical and practi-

cal success and quality of the existing solutions are often highly connected

with open-source community projects more than with commercial sphere de-

spite the fact that many IT-related companies are fostering machine learning

products. We believed that shared collaborative nature of the open-source

communities is more than relevant for the future scientific and practical devel-

opment of the machine learning and neural networks, and that these concepts

are reflected in the N2Sky platform. The N2sky system was initially devel-

oped by Erwin Mann and Erich Schikuta to provision neural network problem

solving virtual organization where any member of the communities can access

or contribute neural network objects all over the Internet [24].The N2Sky vir-

tual organization administrates these neural network objects, provides access

for (arbitrary) users and fosters participating resource nodes. The number of

neural network objects is expected to be very large and continuously grow-

ing. These neural network objects are meant to be shared on the Internet

and provide easy access to the different neural network and machine learning

topologies. Searching for specific neural network resources providing solutions

to given problems can be a time consuming and difficult task. Therefore N2Sky

should be designed to be fully responsive and easy to use and develop.

Problem Statement. Technically speaking, N2Sky is an artificial neural

network a simulator, which primary purpose is to provide different stakehold-

ers with access to robust and efficient computing resource [24]. It was designed

to provide natural support for Cloud deployment with distributed computa-

tional resources. However, the current N2Sky implementation is based on the

Java programming language and deployed as a single monolithic application,

which is not well aligned with the chosen paradigm. Monolithic architecture

is a typical design pattern, and it’s the excellent choice for the initial project

architecture. It provides several guarantees on connectivity between modules,

can speed up the development process due to the homogeneity of the system

and allays the process of adding new features to the system. However, in our

opinion, it is not the best choice in regards to the distributed artificial neural

network simulator, as a monolith and previous implementation applied several

1

critical bottlenecks:

• Low level of development agility. N2Sky Java monolithic system should

be reassembled and deployed each time any component is changed, which

leads to the high development costs. As modules are tightly connected

it becomes an issue to adjust the system,

• Low level of scalability. In distributed high-performance computing,

as machine learning and neural network simulation, efficient usage of

cloud computational resources is one of the crucial parts of the system.

Although it is possible to scale monolithic application across the cloud,

resource utilization in such case will be far from optimal as it will be

necessary to deploy the whole application and some modules will be not

used, which leads to the inefficiency,

• Language dependancy - N2Sky was written fully in Java, and it applied

several restrictions on the neural network development and deployment.

As we’ve experienced, choice of Java for the main neural network devel-

opment language can drastically affect the acceptance of the system in

the scientific community and limit the ability to use the N2Sky platform.

Usually, researchers should not be restricted to programming languages

and depending on the neural network or machine learning model require-

ments, and they should be able to deploy models, which are written in

any language,

• High dependency on one database - the previous implementation was

fully dependant on one database, which was manually mapped to Java

objects using an ORM. That led to the lower level of flexibility and was

a limiting factor for the system, as any future developer needed to deal

with the existing mapping, which became the part of the domain.

Taking into consideration all the mentioned problems, the novel microser-

vice based N2SkyC architecture was designed and developed, which aims for

increased extensibility, portability, dynamic orchestration and performance

fostering cloud container technology.

Some parts and design decisions of the previous architecture definitely

should be considered in the process of the analysis. Alongside the concepts,

the new system implementation is aimed to provide full ViNNSL specification

language support [5]. This project is highly influencing the implementation

2

details and requirements as it meant to be one of the new standards in the

community. A several developments were made to ViNNSL during the years

and system should be designed in a way, that they will be easy to connect.

The layout of this Masters thesis is as follows: Chapter 2 consists of anal-

ysis of the current architecture and design insights of the new N2SkyC ar-

chitecture.Chapter 3 focuses on the technological stack, which is a base for

implementation. Chapter 4 focuses on the components and topology descrip-

tion. Chapter 5 consists of the generalized development guides for the cloud

infrastructure development as well as for neural network researchers. The

thesis ends with Chapter 6, which is the outlook for the system and future

development suggestions.

1.2 Terms and Definitions

Machine learning(ML) - is set of the artificial intelligent methods, which main

characteristics are not the direct problem solvement, but the creation of the

model based on the approximation of the results of the similar problems. The

field is quite broad and includes a wide variety of heterogeneous approaches as

decision trees, genetic algorithms, rule-based learning, classifier systems and

many others.

Neural network (NN) - mathematical models and their implementations,

which are trying to replicate the topology of the real neural activity. Its ar-

chitecture is relatively simple and consists of two main components: simple

parts which are called neurons and connection between neurons. Regarding

problem-solving NN is a multiparametric non-linear programming optimiza-

tion system. Parameters are coming through the network, and by resolving the

coefficients between neurons, the network is trying to estimate and replicate

dependencies between initial parameters and the output of the network.

Deep Learning (DL) - set of architectural models with a high level of ab-

straction, which is forming a multilayer system of non-linear transformations.

Each new layer in such system is specifically designed to extract additional

information from the initial data and to represent the initial data through dif-

ferent abstraction levels - from top to bottom. DL systems are characterized

by a chain of transformations - credit assignment path(CAP). Credit assign-

ment path is describing potential connections between the layers. Until now

there is no specification for the length of CAP to classify the model as a deep

learning model, however usually this length of CAP should be more than 2.

3

Service-oriented architecture(SOA) is how the architecture of a service-

based architectural solution is modeled, rather than focusing on the entire

application. Services are small, detached software elements that solve one

task and can be reused in many applications. SOA is based on the principle

of weak connectivity, which means that each service is an isolated entity with

limited dependencies on other shared resources, such as databases, application

legacy or different APIs.

Microservices architecture - is a subset of SOA, a modern representation of

service-oriented architecture (SOA), used to create distributed software sys-

tems. As in SOA, the modules in the microservice architecture interact over

the network with each other to communicate. Another similarity is that mi-

croservices use protocol-independent technology. This architecture is the first

implementation of SOA that appeared after the introduction of DevOps, and

it is gradually becoming the standard for continuously developing systems.

In the architecture of microservices, the modules should be small, and the

protocols should be lightweight.

DevOps - development and operations, a set of practices focused on the

active interaction and integration of between developers and maintenance and

deployment engineers.

LXC - operating system-level virtualization for starting several isolated

instances of the Linux operating system on one node.

1.3 Related Work

distributedDataMining (dDM) is a open source project, which main goal is to

leverage distributed computing by connecting interested parties into the re-

search process [9]. Currently, project is operating based on the Berkeley Open

Infrastructure for Network Computing(BOINC), which provides both techni-

cal and software infrastructure to enable distributed computing[26]. BOINC

is providing different software platforms to use the computation power of the

nodes when they are at idle. Currently dDM is running few scientific projects

in different spheres: price prediction on the time series, evolutionary simula-

tions, social network analysis and some others. The project is not restricted

to the neural networks and trying to evaluate different machine learning tech-

niques.

Neural Designer Is a software product, which is aimed to provide data-

mining functions alongside with neural network capabilities[4]. It is written in

4

C++ and provides a desktop application to work with. Being a commercial

product, it is developed based on the open-source library OpenNN. Although

it is quite a robust and convenient software, it doesn’t allow any distributed

computing feature nor sharing or communication between users.The UI exam-

ple is presented on Figure 1.

Figure 1: Neural Designer Screenshot

DNNGraph Is a relatively new project, which aims at providing domain

specific language for neural network description[2]. It is written in Haskel

and allows the variety of optimizations which are automatically tuning the

performance of the model. In some sense, it is similar to ViNNSL, but it

doesn’t have any execution environment or distributed nature. Neverlethess

it gives a possibility to create complex deep neural network topologies and

generate code from them for several popular frameworks. It is to consider,

that N2Sky system can benefit from such addon as new design will allow

running language-independent code. The UI example is presented on Figure

2.

5

Figure 2: DNNGraph Screenshot

Neuroph is a platform developed by University of Belgrad and it’s aim was

to provide simple to use tool for modeling neural network activity[18]. It is

written in Java language and provides both GUI and library to connect to own

Java projects. In compartment to other platforms, it is not so sophisticated

and mostly suitable for small development projects or university projects. It

is still possible to develop a custom neural network but is becomes not a

convenient task. Neuroph interface is presented on Figure 3.

Figure 3: Neuroph Software Screenshot

The N2SkyC project had a long history and was prejudge by several

6

projects, which were also developed at the University of Vienna:

1. N2Grid. The N2Grid system [23] which was fostering Grid technologies

and aimed to provide a unified environment for storing and retrieving

neural networks objects. It was designed, that neural network object

should be stored as data blobs in the distributed storage.

2. N2Cloud. Next platform, which was developed in 2010[15]. Its main

focus was to build up a simulation system which can be run in the

cloud. It was the first platform, which tried to leverage SOA.

3. N2Sky. The last version of the N2Sky environment was an attempt

to user RAVO description and guidelines and to design and implement

virtual organization platform.

4. The current version of N2Sky is aimed to rethink the architecture ap-

proach and provide new architecture based on the microservices design.

It aims to put together all conceptual design parts, which were developed

before.

Previous version of the N2Sky UI is presented on Figure 4.

Figure 4: N2Sky UI Screenshot

7

2 The N2SkyC Architecture

2.1 Current Architecture Analysis

In this section we analyze the current N2Sky Architecture, identify possible

bottlenecks and provide insights on limitations of the system.

2.1.1 General Scope

The N2Sky Architecture was designed to suit the distributed cloud infrastruc-

ture and provide several guarantees according to the system requirements.

Requirements analysis was performed based on the questionnaires. However,

mostly design of the system was influenced by requirements defined by Virtual

Organizations characteristics and not technical requirements. To a certain ex-

tent, it can be conclude that most architectural decisions in the first place

were designed to be aligned with Virtual Organization guidelines. Implemen-

tation decisions were discussed very briefly, and there was no clear description

of how the chosen technologies will enable described functional requirements.

Nevertheless, functional requirements themselves are well aligned with the

chosen domain and share common values with the new architecture. N2Sky

was designed using a set of technologies which have several drawbacks both

for cloud-based applications and machine learning development. The previous

version of the architechture is presented on Figure 5.

8

Figure 5: Previous N2Sky Architecture

Java

Infrastructure problems Java programming language has quite a long history

and was developed to help enterprises build websites and applications on top

of application servers. Applications have since shifted from application-server-

based model to a cloud-based model, a very different paradigm with distinct

requirements for composing applications for reliability and scale.Within cloud-

based environments, infrastructure no longer relies on application servers run-

ning on dedicated hardware.Meanwhile, container technologies such as Docker

have emerged, with requirements for externalizing configuration management,

deployment of applications, and packaging. Despite the fact, that Java can

be used for development of any applications, its object-oriented nature, and

architectural patterns often lead to the monolithic design. Tight coupling of

the modules leads to the inability to decompose the system into smaller com-

ponents, as there is lack of communication and a lot of shared properties and

9

dependencies. Also, Java-based N2Sky needed several infrastructural require-

ments including Spring framework dependencies, Tomcat server to serve an

application, Maven2[3] project management tool to build plugins, Jersey[19]

framework to produce RESTful Webservices. All the data and data flow was

designed to be managed by Spring Data JPA ORM[20] , which is using many

configuration files, which should be compliant with a chosen database. As a

result, any developer and neural network researcher would need to familiarize

himself with all these technologies. Before scaling the application to the cloud,

any instance on the cloud should meet all these requirements.

Neural network development Neural network development doesn’t specif-

ically imply any programming language. But the development of the virtual

organization with a focus on the cloud infrastructure and shared resources

should be designed in a way to provide services and open platform to the

widest audience possible, including providing a possibility to extend the sys-

tem. Currently, there exist two frameworks, which are enabling neural network

development in Java: Deeplearning4j[17] and Neuroph. Both of them were not

considered, and it is highly unclear on how they should be integrated into the

existing N2Sky application.

Cloud infrastructure provider Eucalyptus was chosen to be the main de-

ployment platform. However, it is highly outdated. Starting as an open-source

university project after some time Eucalyptus was bought by HP and shifted

its main focus. Eucalyptus is mostly written in Java, uses SOAP as a com-

munication protocol between services and this makes it highly unscalable and

non-robust. Eucalyptus is a monolithic product, which is bundled as a package

to fulfill client needs and whereas OpenStack is a set of loosely coupled com-

ponents.Eucalyptus was focusing on providing an additional layer on top of

the public clouds, but not as a separated cloud infrastructure provider. Being

written in Java programming language, it is mostly suited for application de-

ployment. On the other hand, there exist other cloud infrastructure providers,

as OpenStack which is written in Python and provides a wide variety of ser-

vices to configure for any task.

Web portal The web portal was meant to be developed as a separate ap-

plication using HTML5, jQuery, and The-M-Project but in reality, it was

implemented as a part of monolithic Java application.

10

2.2 Redesign Motivation

2.2.1 Scaling and Architecture

During the development of the software engineering sphere, the performance,

and accessibility requirements for information systems were continually grow-

ing both for new applications and for already existing ones. In order to meet

new requirements, systems were usually scaled vertically - increasing the com-

putational power of the node. However, vertical scaling efficiency was quite

limited, as an increase in computational power of the node was not giving

necessary results. That is why horizontal scaling was taken into consideration

- approach, where computational power increase is not a result of adding more

resources to the concrete node, but instead adding new nodes into the system.

It should be noted that to ensure the efficiency of the application horizontal

scaling, it is necessary to lay down its possibility in the architecture of the

system at the stage of its design.

Scaling strategies can be presented in the form of cube, where each side

represents a specific scaling strategy[1]. Graphical representation of scaling

cube concept is presented on the figure 6

Figure 6: Scaling Strategy Cube

Scaling using X-axis is a common horizontal strategy - which uses load

balancing. It is relatively easy and non-demanding scaling strategy for many

types of application, including scientific computing. This approach works even

in cases, where there was no initial scaling design. Monolithic applications

are usually scaled in this way, as other design patterns were not considered

at the architecture design time - that scenario reflects the previous N2Sky

11

implementation.

Scaling using Y-axis is a decomposition strategy, where an application is

split into several services with an isolated functionality. System communica-

tion is designed to be managed by routing mechanics. Although such approach

can also be implemented in monolithic applications, it becomes a challenge to

keep services or modules isolated from each other and to remain consistent.

Scaling using Z-axis is similar to X-axis scaling, but with a difference, that

load is split based on the data requirements of the request. Therefore, it is

usually achieved by sharding the database.

2.2.2 Microservices Architecture

Microservices architecture is an architecture, which enables horizontal scaling

within ”shared-nothing” cloud infrastructure on the design level. The main

component of such design is application decomposition in a set of small ser-

vices, which are run in a separate isolated environment and communicate with

other parts of the system through lightweight messaging protocols as message

queues and HTTP. A process of decomposition allows developing a system,

which will be horizontally scalable by default, without additional effort. It ex-

ists minimal infrastructure and management requirement to implement such

system, which often includes automated deployment strategies and monitor-

ing. This allows using any frameworks and data storage technologies.

As with any decision, there are several drawbacks and compromises - as

the N2SkyC is composed of a wide variety of services, there is an additional

effort to maintain all of them and not only one monolithic application.

An additional requirement is that system should be designed in a robust

and fault-tolerant way, as in cloud infrastructure some services can become not

available, and the system should be able to identify this and try to provide a

suitable way of resolving the issue. It implies additional implementation effort

and usually is performed by a set of testing and monitoring services which

primary purpose is to identify a problem and automatically spin the working

version of the service.

To ensure stability and maintainability of the system, it should be contin-

uously monitored - both on the application and infrastructural levels. In case

of N2Sky monitoring, the task also becomes a part of the load balancing, as

new neural network parts can be spawned on request.

12

Monitoring is especially important because of system composition - asyn-

chronous services communication can lead to unpredictable behavior.

Using each component as a separate service also allows to plan, develop

and deploy new features more efficiently, as there is no need to rebuild and

deploy the whole application, it’s enough only to deploy new parts.

The drawback of such approach is that changes in services can be un-

synchronized, which can lead to system fails. To ensure, that services are

providing the same functionality different testing techniques should be consid-

ered.

To implement a stable system, it is needed to invest time and effort into

designing automated testing and deployment pipeline - if done correctly it will

allow having the same complexity level for all the components, as they will

not differentiate in deployment.

Process automation should be split into several parts:

• Resource allocation automation - infrastructure layer should be able to

deploy a new node on-demand. The most efficient way to achieve high

level of automation is to use cloud infrastructure,

• Build automation - to ensure, that new revision of the component is

compliant with the previous revision. It can be achieved by versioning

and testing techniques,

• Deployment automation - to ensure that services can be deployed in the

production environment and met all the required dependencies.

It is very important to ensure that all the requirements of the microservices

architecture should be met. It implies not only robust system design, but also

choice of the right technological stack.

2.2.3 Microservices Infrastructure

Microservices deployment is a non-trivial process, and therefore it should be

well designed as if done improperly it can lead to the exponential complexity

growth. Continuous integration allows controlling the deployment process and

bringing system components together.

It focuses on the checks and module testing each time new service or code

is produced. One of the stages of this process is the artifact creation, which is

13

used afterward in tests. We should also ensure that the tested artifact is the

same while deploying the service across the cloud infrastructure.

To allow artifact consistency, there should exist a trusted repository, which

holds the tested artifact versions. This technique gives additional advantages

as it guarantees that new versions of the services will work with the previous

versions. If there is no system which enables it, with each new code revision

will be much harder to ensure stability and consistency. There exist many

test technologies to provide coverage, and some of them are more suited to

the microservices architecture, as for example Contract based testing, but this

discussion is out of the scope of this thesis.

If continuous integration is done without any compliance checks, it will

only tell if the code syntax is correct, but provide no additional information

on the system.

The system should reject changes, which are not compliant with current

services topology, as it can lead to the system failure.

Continuous integration usage should be designed in a way to allow the in-

dependent changes and deployment of each service. Several different strategies

of an interrelationship between services and deployments are available:

• Monolithic deployment,

• Modular deployment, and

• Split deployment.

Monolithic deployment is characterized by single version control system,

which is responsible for tracking all the changes to the source code. If the

source code of any service changes it automatically triggers the checks and

deployment creation process. This approach is the simplest to implement, as

there are a low number of repositories to track and it is efficient to use, but

only in a case where there is no necessity to deploy services separately. The

bigger problem also arises when there is no certainty on which artifact should

be deployed. In this scenario all the services are deployed - if there is any

failure in any service, the development process will be paused until the issue is

resolved. Example of monolythic deployment workflow is presented on Figure

7.

Next approach is modular deployment, which is characterized by single

code repository, but continuous integration process is separate for each ser-

14

Figure 7: Monolythic Deployment Workflow

vice. This approach lefts the code change reflection as easy as in monolithic

approach, but there is a possibility that changes are relevant to the several

services, which in the same way will be reflected in tighter bounding between

the components, which contradicts the idea of microservices architecture. Ex-

ample of modular deployment workflow is presented on Figure 8.

Figure 8: Modular Deployment Workflow

The third option is to create a separate repository for each service and

invoke integration process only the service, which is affected. It becomes

easier to have clear development process and to coordinate the development

in general. However, it implies additional organization work to synchronize

code bases of the several microservices. Split deployment example workflow is

presented on Figure 9.

Figure 9: Split Deployment Workflow

During the work on the new N2Sky system architecture, we have evalu-

ated and analyzed several methods of continuous integration and came to the

15

conclusion that split deployment reflects the requirements of the microservices

architecture the best.

2.2.4 Component Decomposition Guidelines

The main idea of microservices approach is to decompose the software system

functionality into separate components, which are responsible for a certain

task. Microservices do not offer any decomposition framework, so it is the

responsibility of the software architect to distinguish areas of responsibility

for each component. Despite the fact, that microservices definition is not very

clear and can vary, common design decisions and features exist, which have to

be considered:

• Services decomposition,

• Smart endpoints and dumb pipes, and

• Data management decentralization.

Taking into consideration challenges, which arises during the service de-

composition process, we defined several guidelines that can be useful for the

future implementation process.

These guidelines can be used to analyze which functionality should be

split and how to define boundaries of the services. It is important to mention

that current architectural version of N2SkyC was implemented to provide the

conceptual framework and support the architectural change to the new design.

It still can be decomposed further and changed according to the future needs

- that was the main point of the refactoring of the system.

Taking into consideration previous N2Sky architecture design as a refer-

ence, an important step is to analyze the current system and deliver insights

on how the system should be decomposed according to the different require-

ments. The previous revision of the N2Sky architecture is presented on Figure

10.

It is important to mention, that although components are described as

”Web Services” they are not providing any endpoints to other components of

the system and communication is encapsulated in the monolithic logic of the

application.

As a result of the decomposition and design process, following architecture

was delivered - it is presented on Figure 11.

16

Figure 10: Previous N2Sky Architechture

Figure 11: New N2Sky Architecture

To decompose the application into parts, we should keep attention on the

set of different dimensions.

Domain capabilities and consumer needs Analysis of the process of de-

livering value to the end-consumer of the product helps to understand, how

components should be composed. N2Sky platform focused on providing cloud

resources and neural network and machine learning development and execution

environment for a wide variety of users. That is why we designed components,

which are directly responsible for delivering this functionality. In the same

time, the second assumption is consumer related needs - it becomes clear,

that services should be designed to fulfill the possible demand of the users.

Splitting functionality in services allows bringing new features and controlling

value-streams of the application. As a result, simulation services, which were

17

separated into two different parts merged into one component, which allows

to scale it across the cloud.

Service context Partly adapting Domain Driven Design ideology[12], we

should conclude which parts of the application and at the same time, which

parts of the domain can be put together. The cloud infrastructure, for exam-

ple, was not considered as a part of the system, so there were no any design

decisions to support the communication between services and resources. How-

ever, the resource allocation and management are highly important part of

the system, and there should be the technical possibility to scale the system

across the cloud. Taking into consideration these assumptions, it leads to the

conclusion, that all services and components of the system, being deployed on

the cloud as separate applications should be managed all in the same manner.

As a result, it was decided to design a component, which will be responsible

for management of the services across the cloud.

Communication protocols Having the system sharded and decentralized

implies additional requirements on how components are communicating with

each other. The communication patterns should reflect the data and opera-

tion flow - it is important that services have uniformed communication and

that there is no service with too much responsibility. In N2Sky case, simula-

tion management service wasn’t composed well: it included not only domain-

specific tasks as simulation but also business and administrative tasks. In

the new architecture, simulation service functionality is encapsulated into one

service and there, therefore, communication management is more clear. An

additional point of interest is that the application should be designed in a way

when there is no component which is highly dependant on others. In case

such component exists, as cloud management service, it becomes important to

ensure that there are systems which can monitor its health and scale it when

needed.

Interconnectivity If there will exist a necessity to change application func-

tionality in the future, it is efficient to design the system in a way, that changes

will affect only isolated services. Therefore, it becomes important to predict

which functionality will be developed in the future, so when the new revision

of services is developed, there is no need to change the API. Regarding mono-

lithic application, when components dependency is hidden and split across the

application, it becomes challenging to change the application without breaking

it. Interfaces description and specification can help to slow down the complex-

ity growth, but it is a temporary mean. In the new N2SkyC architecture, each

18

component can be changed independently and therefore there is less effort on

developing the system.

Data architecture Services have their data, and data flow and microser-

vices architecture allow to use a separate database for each service. However,

it brings an additional task to design data storage and data flow in a consis-

tent way. If several services are dependant on the same data, it may worth

to put the data in one place and scale it horizontally if needed. In case of

N2Sky, one database was responsible for storing data of functionally differ-

ent domain fields: user management, simulation management and registry for

storing neural networks. Splitting this logic according to the data isolation

principle led us to the decision to create three data storages - one for each

specific microservice. One for user management, one for monitoring and alert

system and one for neural network simulation services.

Merge and split During the development, knowledge domain can become

wider, and there will be a need for creating additional services and integrating

them into the system. Architecture should enable efficient merge of the services

or their split. If the system will be too interconnected, that will decrease all

thebenefits from using the microservices approach, as in terms of development

it will on the same level of complexity, or even exceed it, as with monolith.

Service discovery Parts of the challenge to use and deploy service across

the cloud infrastructure is service discovery. By default, any microservice is

unaware of other parts of the system and therefore as services communicate

with each other using network, they should have a way to know that there

are other parts. A monolithic application doesn’t have such problem, but if

we assume to scale the system horizontally across many nodes, it becomes an

important task. In the new N2SkyC system design, the orchestration tool,

which is part of the cloud management service and deployed separately is

responsible for service discovery and identification.

Loose stability As services are meant to be constantly developed and de-

ployed, there can be a scenario in which several versions of the service exist

simultaneously. N2SkyC is designed to be the platform which is used by differ-

ent types of developers, and it is critical to enable the stability of the system

while services are different. To resolve this problem, it is efficient to design and

develop services and architecture in such a way, that they should be redeployed

only in case of critical changes.

Stateless design Creating several instances of the service means, that each

19

of the parts should have access to the data and resources. In the microservices

architecture, that means, that services should not have own copy of the data,

but rather fetch the data from a remote data storage. Additionally, the part of

the same concept is that services should be deployed in one shot, and instead

of upgrading old revision of the service it is more efficient to design the system

in a way, that it can switch from usage of one service to another one. It meant

to solve the problem with data and communication inconsistency.

Monitoring High load systems, which are developed to be scaled across

the cloud should be able to react accordingly to the additional resource de-

mand. In the scientific field, it is especially important, because resources are

not free and ideally they should be provided by demand. N2Sky system is

not an exclude, and it was designed to fully leverage the cloud capabilities.

However, the previous version of the architecture didn’t answer the problem of

workload detection and scaling of the system. There were no components de-

signed, which are responsible for cloud management and therefore we decided

to fill this gap. It is performed by two important services: monitoring and

component orchestration. Whereas cloud monitoring controls cloud resource

usage and orchestration management is tracking the performance of a specific

service.

Combining these guidelines allowed us to decompose the previous applica-

tion and develop a new N2SkyC architecture, which provides better guarantees

and suits the cloud infrastructure.

3 Technological Stack

To enable described features of the system and reflect the new architecture

design, it is highly important to choose the right technological stack. It im-

plies no limitations on the development of the services themselves, but we

believe that some underlying technologies can suit and reflect microservices

architecture in a better way.

Although cloud platforms only provide infrastructure and environment for

container deployment, and it is not related to the current software applica-

tion design, cloud infrastructure products are different in terms of ideology

and communication means. Therefore we chose OpenStack[25] as a base for

the cloud infrastructure as it is also built according to the microservices ar-

chitecture approach. It provides great support for microservices paradigm

20

implementation but implies no boundaries on the software developers. Open-

Stack consists of a variety of components, which are also designed in a modular

way: computing, networking, storage, images, UI, authentication, and others.

From the microservices perspective it provides a high level API in order to

manipulate internal services.

Isolation of software functionality can affect the development and deploy-

ment process. However, benefits of the current implementation often will de-

pend on a technology stack. Existing technology that fosters the microservices

approach is Linux containers (LXC)[7]. Containers are a lightweight OS-level

virtualization abstraction primarily based on namespace isolation and control

groups.

As container quantity can grow very fast, it becomes clear that manual

maintenance of dozens, or even millions of Docker containers can be a tough

task, especially considering a cloud environment. For that reason container

orchestration software as Cloudify[14], Kubernetes [14] and others were de-

veloped. These tools are providing high-level interfaces to communicate with

cloud-based platforms and control deployment and execution of containers.

Putting all these technologies and design approaches together, we can a ro-

bust and efficient cloud-based environment, which can be easily scaled both

horizontally and vertically. However, it is still important to be sure, that

selected technologies will benefit the system.

3.1 Cloud Infrastructure - OpenStack

The Cloud computing paradigm provides access to large amounts of comput-

ing power by aggregating both hardware and software resources and offering

them as a single system view. It hides the details of implementation and man-

agement of software and hardware from the end user. Cloud computing is the

next step in the development of the distributed systems. Although it is not a

new concept until now there were not so many technologies, which are suit-

able specifically for cloud infrastructures. Lately, with a rapid development of

the DevOps, it became more convenient to design systems which are deployed

across ”share-nothing” infrastructure.

OpenStack is a system for organizing cloud infrastructure. In other words,

the tasks of this system include the organization and control of infrastructure

and services that support the processes of creating virtual machines and con-

tainers and supporting their deployment. A user working with this platform

21

can request system for resource allocation and run a virtual machine with

specific functionality to perform any tasks. Figure 12 shows the architecture

of the OpenStack system.

Figure 12: OpenStack Simplified Architecture

[27]

OpenStack consists of a number of services, which provide all functionality.

All modules support REST API. REST API - the interface of the application

which is using HTTP requests for communication[21]. To implement REST,

a client-server architecture is used. This method is used in OpenStack since

all components are independent services and REST HTTP communication is

a way to ensure consistency in communication means.

Nova The core module of the OpenStack. The tasks of this module include

launching virtual machines and their management. Nova components provide

virtual machines resources necessary for their work. Management of virtual

machines is performed by hypervisors. The Nova component consists of several

weakly dependent components (the Nova architecture is shown on Figure 13).

Requests accepted by the interface are routed through HTTP depending

on the request to a specific service. The message queue is used by compo-

nents to interact with each other. A significant part of the functionality is

provided by the Scheduler and Compute daemons. In addition, the module

stores information about virtual machines, such as time creation and modifica-

tion of virtual machines, some network information, the state of the machines,

information about the allocated resources and other. The scheduler during

22

Figure 13: Nova Architecture

the initialization phase of the virtual machine determines where it should be

runned depending on the resource requirement. The Compute daemon pro-

vides interaction with hypervisors and virtual machines. OpenStack provides

support of the LXC containers, which are spawned directly using the docker

driver, but this functionality is still under development.

Swift It is a distributed, decentralized object storage with support mech-

anism of replication and other technologies that provide high fault tolerance.

Swift uses the consistency model, which ensures that all queries will eventually

return the last values if there are no new changes to the data. This approach

provides system high availability. For data stored in the system, the following

hierarchy is used: account, container, object. The account represents the top

level of the hierarchy. Containers, which have the same names but located

in different accounts, represent different entities. Similarly for containers and

23

objects. The objects are end data, such as documents, images, and more.

The system supports data compression. It is important to note that Swift is

not the only available object repository. For example Ceph[22] can be used

as the object storage, which provides support for the Swift and Amazon S3

interfaces.

Heat The orchestration system, designed specifically for the OpenStack

infrastructure. Heat provides management of virtual machines and other ob-

jects of the OpenStack environment (such as users, security groups, etc.). The

system manages entities through templates that describe use cases. Templates

can be written in several different formats, including AWS format (Amazon

Web Service) or HOT (Heat Orchestration Template).

Keystone One of the main OpenStack services, which is responsible for

users authentication and providing a catalog of services with their API. Any

user before logging on to OpenStack must log in to Keystone. The user, in

this case, can be a person or a service. After that, the user receives a token,

which is valid for a certain time and in which holds the information on user

permissions.

Glance The store of images of virtual machines. Any storage can be used

with Glance, as it is not responsible directly for storage and can be coupled

with any file system. When prompted to create a new virtual machine, Glance

loads the image from storage and sends it to Nova.

Cinder Block storage service. This service provides virtual storage and

assigns it to the virtual machine. The system architecture is presented on

the. The volume manager controls volumes, devices of block storage. These

volumes are connected to compute nodes using iSCSI technology, and They

are used as long-term storage.

Horizon The OpenStack graphical interface, one of the ways to control

the system. Another option to manage OpenStack is CLI. It is assumed that

the OpenStack administrators will modify it according to the domain needs.

Therefore source code is provided in each OpenStack installation.

Neutron The OpenStack module, which provides a network virtualization

service for all other OpenStack subsystems, and for virtual machines in the

OpenStack. Neutron is responsible for configuring virtual network interfaces

and organizes a network which is used by all modules of the system. With

Neutron, users can create complex network topologies if there is a necessity

to work with multi-level web applications. Neutron virtual switch connects

24

virtual machines via ports. After creating the port, it receives fixed IP address.

The address is issued either from the address pool or the Neutron service itself.

Neutron allows creating complex network topologies, which are then connected

through virtual interfaces.

Ceilometer System monitoring for components of OpenStack. Ceilometer

provides a collection of performance metrics for computational resources and

network. In addition to collecting metrics, Ceilometer can notify the user of

specific events. Information is collected through agents running on each node.

There is an opportunity use databases(PostgreSQL, MongoDB, etc.) to store

collected information .

Sahara The service which is responsible for the deployment of multiple

distributed computing environments: Apache Hadoop, Spark, and Storm. It

allows to run Map-Reduce tasks, aggregate the results and provide interfaces

to cluster components.

As a result of such services composition OpenStack can provide a robust

and scalable environment for the N2SkyC deployment and enables all the

features of the microservices architecture on a design level. Also, it fosters the

usage of LXC container technology, especially Docker and allows to deploy

Docker containers across the cloud infrastructure with additional effort, which

will presented in the development guide.

3.2 Virtualization Technologies

One of the main ways to manage a large number of hosts is to divide exist-

ing physical machines into smaller parts. Traditional virtualization such as

VMWare or AWS-based brought huge benefits in reduction of host manage-

ment costs. However, a new development in this field provides new opportuni-

ties for microservice architecture. Running one instance of the microservice on

the server without virtualization is efficient. Thus, in most cases, the deploy-

ment of a multiple microservices is performed on bare metal without virtual-

ization. Running multiple services on bare metal without virtualization can

lead to conflicts in the environmental settings between the different services,

as they share the same OS and memory. Microservices are not isolated from

each when they are running on the same machine. Also, the services deployed

on the one server can occasionally consume the resources of other services,

reducing their performance.

25

3.2.1 Traditional Virtualization

Running a large number of hosts is expensive. If using physical servers as

hosts, this becomes more and more challenging. If nodes are used to hori-

zontally scale the system, it will mean that resource usage will be highly in-

efficient. Virtualization allows splitting the physical servers into independent

hosts, each of which will contain different application or application parts.

Main software part, which enables virtualization is called hypervisor, and it

has two main functions. First, it allocates the CPU and memory resources of

a physical machine to the virtual host. Secondly, it serves as a control layer

that allows manipulating virtual machines. A system which is run inside of the

virtual machine is isolated from the host environment. The virtual machine

is completely separated from the underlying physical host and other virtual

machines through the hypervisor.

One of the problems with using virtual machines is in need to allocate

resources for its operation. Is is completely limiting the reuse of dedicated

resources, such as CPU, I/O, and memory for other virtual machines, or the

primary operating system system. The more virtual machines are managed by

the hypervisor, the more resources are required. Ultimately, the management

overhead becomes a limiting factor for the further split of physical resources.

In practice, this means a proportional increase in the resource management

costs as the hypervisor is tighly connected to the increasing number of virtual

machines.

Virtual machines are quite heavy. In this way the launch of many small

virtual machines on a physical machine is not effective because it has large

overheads, in fact, it as a waste of resources for the hypervisor management.

If deployment of microservices is carried out in one virtual machine, the same

problems that have been described above will occur. For example, deploying

microservice s written in Java programming language will lead to the shared

JRE usage. Any change in the JRE on the host will affect all the services

deployed on this machine. Also, if there is a need in specific OS settings for the

service or certain library, it will be more difficult to manage the requirements,

as they apply immediately for all services.

One of the principles of microservice architecture states that service should

be isolated and autonomous, fully encapsulating the execution environment.

To comply with this principle, all components, such as the operating system,

runtime and executable code of the microservice must be autonomous and

26

isolated. The only way to achieve this - follow the approach of one microservice

per virtual machine. However, this will result in inadequate resource usage of

the virtual machine. Also in many cases, due to additional overhead costs can

reduce all the advantages of the microservices.

3.2.2 Container-based Virtualization

The technology of containerization is far from new and not a disruptive, inno-

vative technology. It has been used for quite a long time. Nevertheless, this

technology began to gain considerable popularity with the arrival of cloud

infrastructure. Disadvantages of traditional virtual machines have become a

catalyst for increasing popularity of containers. Conternization technology was

simplified by tool providers to reach the community faster. The popularity

of DevOps and microservice architecture also accelerated the containerization

technology development. Containerization technology provides an isolated en-

vironment in the operating system. This technology is also called virtualiza-

tion of the operating system. In this approach, the kernel provides an isolated

virtual space. Each of the virtual spaces is called a container. Containers al-

low other processes to create an isolated environment on the operating system,

which is hosting these containers. Figure 14 shows different layers, involved

in the process of containerization.

Figure 14: Container Architecture

On the one hand containers are a simple mechanism and on the another

they are powerful technology to deliver loosely coupled software components.

In general, containers pack all executable files and libraries that are required

to run the application and don’t provide any additional interfaces to the exter-

27

nal world without a permission. Containers completely isolate the following

elements:

• File system,

• IP address,

• Network interfaces,

• Internal processes,

• Namespace,

• OS libraries,

• Application data

• Dependencies,

• Configuration files.

All containerization tools are based on the functionality the Linux kernel.

The main components of the Linux kernel for containerization are listed below:

• Namespaces,

• Control groups.

Namespaces are used to create an isolated environment, which is called a

container. When the container is started, the system creates new namespaces

for this container. The namespace provides an isolation layer. Each aspect of

the container is performed in a separate context.

• PID,

• Networking,

• Inter-process communication,

• Mount points,

• Isolated kernel and version identifiers

28

Control groups as well as namespaces are contained in the Linux kernel.

Control groups limit resources, consumed by the container. They also allow

the Linux kernel to divide available hardware resources between containers

and limit or expand these resources as necessary. For example, it is possible

to limit memory usage for a particular container. At first glance, virtualization

and containerization share the same characteristics. However, containers and

virtual machines are quite different technologies, and they are also solving

different virtualization problems. These differences are seen in Figure 15.

Figure 15: Differences between VM and LXC

Virtual machines work at a much lower level than containers. Virtual ma-

chines provide virtualization software, such as CPU, I/O, memory, etc. The

virtual machine is an isolated component with the built-in operating system,

which is called a guest operating system. The virtual machine contains the

operating system completely and runs it without any dependence on the host

environment. Because the virtual machine includes the operating system en-

vironment entirely, it is quite heavy. On the one hand, this aspect can be

considered as an advantage, but it is also a disadvantage. The advantage is all

the processes, which are run in the guest OS are isolated. The disadvantage

is a limited amount of virtual machines that can run on the host, as virtual

machines reserve the resources necessary for their work. The size of the virtual

machine directly affects the load time. Starting the virtual machine is a quite

computationally heavy task, and usually, it takes some time.

On the other hand, containers do not emulate all hardware or whole OS.

Unlike virtual machines, containers use certain parts of the kernel of a guest

operating system and host OS. Containers do not use the concept of a guest

operating system. A container provides an isolated execution environment

directly on the top of host OS. This strategy is also both an advantage and

a disadvantage. The advantage is that container is usually light and fast to

29

deploy. Because the containers share the host operating system, the use of

resources by containers is rather small. As a result, a number of containers

which can run on one host node are relatively high, which cannot be achieved

with virtual machines. Because the containers are running on the same host

operating system, there also exist limitations. For example, it is not possible

to configure a firewall inside of the container. Processes which are run inside

of the container are completely isolated and independent of processes from

other containers, running on the same host system. Unlike virtual machines,

the images of containers are publicly are available on various portals. This

greatly simplifies the development because software engineers don’t need to

spend time building images from scratch. They can use the basic images from

certified sources and add additional layers of software components to the base

image.

The lightweight nature of containers also provides opportunities for their

automatic creation, publication, downloading and copying. Possibility to

download, collect, deliver and run the container with only a few commands or

with REST APIs is a more flexible way of software development. The deploy-

ment of a new container takes a few seconds. Thus, containers have a huge

advantage over virtual machines, but virtual machines have their strong sides.

For the N2SkyC implementation, we decided to choose containers as they suit

for the chosen architectural pattern of microservices.

3.2.3 Docker Platform

Docker[16] is one of the most well-developed platforms fostering containeriza-

tion technology. The Docker platform solves three major problems of services

deployment:

• Delivery of the code to the server,

• Run the code,

• Uniform the environment.

Docker allows to isolate services from the infrastructure, so it is possible to

deliver them much faster. It also allows managing the infrastructure using the

same principles that used in managing applications. Using Docker tools for

delivery, testing and deployment, the delay between new code deployment into

30

the version control system and roll-out of the service on the production-based

server is significantly decreased.

Docker provides the ability to pack and run services in the isolated envi-

ronment, which is called a container. This isolation and security allow run-

ning multiple containers on the same host at the same time. Containers are

lightweight because they do not require the work of the hypervisor. They run

directly on the host machine’s core or in case of the OpenStack infrastructure;

Nova service can spin them directly on the bare metal. Thus, it is possible to

start more containers than virtual machines on the same physical equipment.

Also, Docker containers can be run in the virtual machines. The container

becomes an atomic unit for distribution and testing. After development, the

application can be deployed on the production server manually or with the

help of container orchestration tool. This deployment technique is uniform

across all platforms, regardless of where the application will be deployed to

the production server, in a local data center, cloud provider or hybrid envi-

ronment.

Docker optimizes the development cycle by providing developers with a

standardized environment. Containers suit will for continuous integration and

continuous deploy. A typical software development scenario is that new appli-

cation service or artifact is deployed after code edits are applied to the version

control system. Using Docker, this artifact can be a container itself. Devel-

opers or QA engineers are using Docker containers in the testing environment

to run automatized and manual tests. If a software bug is detected during

the checks, the container can be re-deployed in the development environment,

corrected and transferred back to the test environment, for re-testing. If all

checks are successful, the corrected container can be deployed into the produc-

tion environment. Docker provides high portability. Portability of the docker

containers, as well as his lightness, allows to dynamically change the load,

increasing or reducing the number of applications and services, almost in real

time.

Docker uses client-server architecture, which is presented on Figure 16.

Docker client interacts with the background process, which is called Docker

server and it starts containers. Client and background process can be per-

formed in one OS, and it is possible to connect a client to a remote background

process. Docker client and background process interact via REST API over

sockets or via a network interface. Background process Docker (dockerd) re-

ceives requests and manages Docker objects.

31

Figure 16: Docker Architecture

[10]

The background process can also interact with other background processes.

The background process manages the following objects:

• Images,

• Containers,

• Network interaction,

• Volumes,

Container repository The container repository stores images. This reposi-

tory can be public, and private. Docker Hub[11] is the official open repository,

which stores official images from various technology providers, for example,

Ubuntu or nginx. Official Docker image repository is free for use. By default,

Docker is configured to search for images in this public repository. Also, there

is a possibility to create private image repositories. When using the docker

pull or docker run commands, the necessary images will be downloaded from

the configured registry. Using docker push, the specified image will be placed

in the registry.

Docker image An image is an immutable template containing instructions

for creating a container. In most cases, the image is based on another image,

providing it with new functionality. For example, it is possible to take an

image, which is based on the image of the OS Linux Ubuntu, infusing it by in-

stalling the Apache web server with the developed application, and configuring

the server for the application to function correctly. It is also possible to create

new images or re-use already created ones from the repository. To create a

32

new image, it is needed to create a configuration file called Dockerfile. This

file contains instructions for creating and running an image. Each instruction

in the configuration file creates a layer in the image. When the configuration

file is changed, and the image is assembled only those layers that have changes

will be rebuilt. It is this technology will allows containers to be lightweight

and fast compared to other virtualization technologies.

Docker container A container is a running instance of an image. Con-

tainers can be created, started, stopped and deleted using the Docker API or

CLI. The container can be connected to one or several networks. Part of the

file system can be mounted to it host machine. It is also possible to create a

new image from the current state of the container. By default, the containers

are relatively well isolated from other containers and the host machine. It is

possible to manage isolation level of network interaction between containers

and connected volumes between other containers and the host system. The

container is created from the image, and also contains all configuration param-

eters that are provided when it is created and started. When the container is

stopped, all changes in its state, which are not fixed in the permanent store,

will disappear.

Image Layers Each image is linked to a list of unchanged layers, which

represent differences in the file system. Layers are stacked on top of each other

to form the base for the root file system of the container, which is presented

on Figure 17.

33

Figure 17: Docker image layers

When a container is created, an additional layer is added to the image,

which is called the container layer. All changes made in this running container,

such as creating, modifying and deleting files are written to this variable layer.

Figure 18 shows the layers of the launched container.

34

Figure 18: Running container layers

The main difference between the container and the image is a changeable

top layer. All container changes that add or change the data are stored in this

variable layer. When the container is deleted layer is deleted alongside with

it, and the underlying image remains untouched. Because each container has

its mutable layer and all changes are stored in it; many containers can share

the underlying image and have a different state. The visual representation of

the concept is presented on Figure 19.

35

Figure 19: State sharing schema

Volumes As was mentioned above, when the container is stopped, all data

from the changed layer will be deleted. To persist the data used by the con-

tainer, it should be taken away from the internal container environment and

put into docker volume. A volume is a directory or file on a host machine that

is mounted directly into the container. Any number of volumes volume can be

mounted in a container. Also, many containers can share one or more volumes.

Thus, volumes are created for the persistent storage of data, which is inde-

pendent of the life cycle of the container. Thus, the Docker not automatically

delete the volume when the container is stopped.

3.3 Orchestration Tool

Docker is an excellent tool that provides a full set of functionality to ensure

building, deployment, starting and stopping containers. It is convenient to

use for isolating the environment and it solves one of the problems of the

microservice architecture, which is the encapsulation of various technologies

in a unified format. Using containerization while developing microservices,

software engineers are no longer required to monitor the configuration of run-

time environment, the configuration of environment variables, and the various

libraries that they are used by the service. All the dependencies are encapsu-

36

lated and packed into a container. But when using a microservice architecture,

there are hundreds and even thousands of different services, which also need to

be scaled. The Docker client is great for managing a small number of contain-

ers on a single host. To automatically deploy multiple services, it is needed to

describe their relationships, as well as the number of instances that someone

needs to run. Also, it is required to limit the resources, which are available

to microservices. Thus, if the service is scaled horizontally, it is required to

automatically distribute the load between the started services. To solve this

problem, there are tools for containers orchestration. They are the primary

container management interface for administrators of distributed systems.

The orchestration is a wide term which describes the management of con-

tainers distribution, cluster management, and the ability to add additional

hosts. The Container scheduler accepts files settings that define the launch

options for a particular container, and also algorithms for distributing con-

tainers to different hosts. Orchestration schema is presented on Figure 20.

Figure 20: Orchestration Responsibility Split

Cluster management is the management of a group of hosts. This can

include adding and removing hosts from the cluster, obtaining information on

the current status of hosts and containers, as well process management. Clus-

ter management is closely related to the distribution of load between hosts

since the scheduler must have access to each host cluster for task distribution.

For this reason, it is often one application which is responsible both for cluster

management and for distribution of the tasks between hosts. Taking into con-

sideration, that some cloud infrastructure providers, like OpenStack, allows

deploying containers on the bare metal the task of load distribution between

virtual machines becomes depreciated. However, in the scenario, where there

exists middleware between cloud orchestration service and container orches-

37

tration service, load balancing between nodes is highly relevant.

Cluster management The distribution of load between containers is often

closely related to cluster management, as both of these functions require to

work directly with both containers and the cluster as a single entity. Cluster

management software can be used to retrieve information about the containers

in the cluster and to provide fine-tuning for individual containers. All these

functions can be scheduled and automated. Often, cluster management is

also associated with service discovery service, as it holds all the information

about started containers and their availability. Such services suit well for

storing container configuration information about the cluster topology due to

the distributed nature of the cluster itself. Containers can be marked with

special labels that can be used for distribution of tasks between individual

containers and groups of containers.

When the application is separated into small isolated services, these ser-

vices should be perceived as a whole. In the microservice architecture deploy-

ment of one service without deploying its dependency services makes little

sense, since they must work together. Therefore one additional task, which

should be performed by cluster management tool should be a grouping of the

services. Group management allows an administrator to work with a set of

containers, as with single entity. Running group of containers which are tightly

connected forming one entity, simplifies the management of the application,

without sacrificing the benefits of functional decomposition. Ultimately, this

allows developers to take advantage of containerization and microservice ar-

chitecture, minimizing the effort for system management. Grouping services

allow to distribute them in such a way, so that they are run together, allowing

to start and stop the group at the same time. Also, the grouping of services

supports more complex tasks, for example, setting up individual subnets for

each group of applications or scaling or group based scaling.

To meet all the requirements of the cloud orchestration, it was decided

to take advantage of OASISs Topology and Orchestration Specification for

Cloud Applications (TOSCA)[6], which provides an efficient and clear frame-

work for orchestration of complex applications. It can be adapted to develop

a cloud-based application based on the microservices approach. It uses YAML

language to describe templates, which represent component topology with all

the information about other components of the system. There are two main

syntax elements in TOSCA specification, which specify concrete topology en-

tity and relationship between them: node and relationship. Node is a wide

38

concept, which can include not only the infrastructure system components,

such as networks, sub-networks, servers or cluster of servers, but also soft-

ware components. Relationship describes how nodes are related to each other.

Only a few of the orchestration tools on the market have already implemented

OASIS TOSCA support. As an example, we refer to Cloudify orchestration

tool, which implements a domain-specific language based on TOSCA YAML

specification. It has a built-in domain specific language parser, which is re-

sponsible for validation of the provided template and mapping to the specified

topology entities.

3.3.1 Cloudify Platform

Cloudify[14] is an orchestration tool which allows achieving a smooth tran-

sition to the cloud and easy automation of the most complex applications

throughout their life cycle. It is possible to organize the creation of the entire

cloud infrastructure needed for the application, starting from computing re-

sources to networks and storage devices. Cloudify can deploy applications to

the cloud (Amazon EC2, OpenStack, VMWare Vsphere or even bare metal),

display progress and perform scaling when necessary. It supports various plat-

forms. Therefore it is possible to choose a provider of cloud services, having

the same front end - monitor, manage and scale applications within Cloudify,

regardless of the stack, topology, and platform where they are deployed. The

sample configuration file is provided below.

1 f l o a t i n g i p :

2 type : c l o ud i f y . openstack . nodes . F loat ingIP

3 i n t e r f a c e s :

4 c l o ud i f y . i n t e r f a c e s . l i f e c y c l e :

5 c r e a t e :

6 inputs :

7 args :

8 f l oat ing network name : exte rna l ne twork

9

10

11 network :

12 type : c l o ud i f y . openstack . nodes . Network

13 p r op e r t i e s :

14 r e s o u r c e i d : pr ivate network

15

16

17 subnet :

18 type : c l o ud i f y . openstack . nodes . Subnet

39

19 p r op e r t i e s :

20 r e s o u r c e i d : subnetwork

21 i n t e r f a c e s :

22 c l o ud i f y . i n t e r f a c e s . l i f e c y c l e :

23 c r e a t e :

24 inputs :

25 args :

26 c i d r : 1 . 2 . 3 . 0 / 2 4

27 i p v e r s i o n : 4

28 c l o ud i f y . i n t e r f a c e s . v a l i d a t i o n :

29 c r e a t i on :

30 inputs :

31 args :

32 c i d r : 1 . 2 . 3 . 0 / 2 4

33 i p v e r s i o n : 4

34 r e l a t i o n s h i p s :

35 − t a r g e t : network

36 type : c l o ud i f y . r e l a t i o n s h i p s . c on ta in ed in

37

38

39 s e cu r i t y g r oup :

40 type : c l o ud i f y . openstack . nodes . SecurityGroup

41 p r op e r t i e s :

42 r e s o u r c e i d : secur i ty group name

43 r u l e s :

44 − r emo t e i p p r e f i x : 0 . 0 . 0 . 0 / 0

45 port : 8080

46

47

48 s e r v e r :

49 type : c l o ud i f y . openstack . nodes . Server

50 p r op e r t i e s :

51 r e s o u r c e i d : server name

52 i n t e r f a c e s :

53 c l o ud i f y . i n t e r f a c e s . l i f e c y c l e :

54 c r e a t e :

55 inputs :

56 args :

57 image : 8672 f4c6−e33d−46f5−b6d8−ebbeba12fa02
58 f l a v o r : 101

59 c l o ud i f y . i n t e r f a c e s . v a l i d a t i o n :

60 c r e a t i on :

61 inputs :

62 args :

63 image : 8672 f4c6−e33d−46f5−b6d8−ebbeba12fa02
64 f l a v o r : 101

40

65 r e l a t i o n s h i p s :

66 − t a r g e t : network

67 type : c l o ud i f y . r e l a t i o n s h i p s . connected to

68 − t a r g e t : subnet

69 type : c l o ud i f y . r e l a t i o n s h i p s . depends on

70 − t a r g e t : f l o a t i n g i p

71 type : c l o ud i f y . openstack . s e r v e r c o n n e c t e d t o f l o a t i n g i p

72 − t a r g e t : s e cu r i t y g r oup

73 type : c l o ud i f y . openstack . s e r v e r c onn e c t e d t o s e cu r i t y g r oup

Listing 1: Cloudify TOSCA-based sample configuration

Configuration file defines the services and their topology in the infrastruc-

ture.

Cloudify includes support for a variety of additional technlogies, including

Bash, Chef, OpenStack, Puppet, Windows, and Linux. Cloudify includes

a management node, a gateway, which allows access to applications. The

management of Cloduify is can be done possible through GUI, CLI and a

REST API.

4 Components and Topology Description

Using the previously defined approaches and technologies, the new architec-

ture of the system was delivered. It was composed by applying decomposition

guidelines from Chapter 2 and implemented using the chosen technologies

which allow ensuring the required properties of the system. This Chapter pro-

vides an overview of the services together with their functionality description

and provided interfaces.

N2Sky architecture is presented on the Figure 21.

Functionality can be aggregated into five major upper-level modules :

• User interface module,

• Infrastructure module,

• Monitoring module,

• Computational module,

• Business module,

41

Figure 21: N2SkyC Architecture

4.1 Business Module

The previous revision of the N2Sky system put a high emphasis on the business

cases of the application[24]. This domain is mostly out of the scope of the

research questions of this thesis. Therefore we limit the business domain by

services which are responsible for user management. The services composition

of the business module is presented on Figure 22.

Figure 22: N2Sky Business Module

The functionality of the module is insured by persistent DB storage and

user management service which provides CRUD operations, it’s endpoints with

description are listed in Table 1.

42

Table 1: Business module description

Service Interface Methods Description

User management

/users GET Getting the

list of users

/user/:username GET Getting

data of the

specific user

/user/login POST Login

method

/user/signup POST Registration

method

/user/delete/:username DELETE Deleting

specified

user

4.2 Monitoring Module

This module is responsible for tracking the cloud infrastructure, setting up the

alerts for undefined behavior of the system and proving access to log informa-

tion. The services, which are included into this module, are presented on the

Figure 23. Communication between OpenStack internal services and monitor-

ing is performed through the OpenStack REST API. The module consists of

several services, which are presented in Table 2.

Figure 23: Monitoring module

43

Table 2: Monitoring module description

Service Description

Alert Manage-

ment

Alert management system is responsible for creating

custom alerts on specific conditions, defined by users.

Monitoring Sys-

tem

Monitoring system is responsible for collection data

from OpenStack services and running custom defined

checks against it.

Monitoring

Database

Monitoring Database is used to store monitoring in-

formation received from the infrastructure.

4.3 Infrastructure Module

This part of the system consists of two crucial systems, each of which are split

further into microservices of smaller size. On the one hand, there are set of

OpenStack services, which can be used directly through API.

The second part of this module is Cloudify management system, which is

orchestrating microservices, which are deployed across the cloud. By using

orchestration tool, there should be no need for the manual OpenStack deploy-

ment, as Cloudify can automatically deploy necessary services using stored

configuration blueprints. Services, which belong to this module are illustrated

on the Figure 24.

Figure 24: Infrastructure module

List of the most important interfaces available on the infrastructure ser-

vices is presented in Table 3.

44

Table 3: Infrastructure module description

Service Interface Method Description

Cloudify

/api/v3.1/blueprints/:blueprint-

id?application file name=:blueprint-

id.yaml

PUT Deploys

Cloudify

configura-

tion

/api/v3.1/deployments/deployment-

id

PUT Creates a

deployment

/api/v3.1/executions GET List all run-

ning execu-

tions

/api/v3.1/executions POST Creates an

execution

/api/v3.1/node-instances GET List all

spawned

instances

/api/v3.1/node-instances/{node-

instance-id}
GET Get mon-

itoring

information

OpenStack

Management

Provides set of API for each OpenStack service

45

4.4 Computational Module

The computational module is responsible for supporting the main workflow of

the system and can be called the main logic module. It provides interfaces

for the main functionality of the platform and provides end-points for neural

network management and usage(Figure 25).

Figure 25: Computational module

There exist two type of entities:

• Neural network descriptions - which is an object that is containing a

description of the topology of a neural network including different pa-

rameters as learning rates, activation functions, number of neurons, etc.

N2SkyC is designed to use and adopt ViNNSL language,

• Neural network objects - which are representing a state of the instances

of neural networks, defined by neural network descriptions. In our appli-

cation design, each instance of simulation service is deployed by orches-

tration manager based on the neural network description. After training

the neural network, the object is delivered from simulation service and

stored in the database.

Each simulation service should provide unified interfaces, which are speci-

fied by development guide and is a responsibility of neural network developer.

The functionality and end-points of the services are presented in the Table 4.

Details on the requirements for neural network developers are presented in

Chapter 5.

46

Table 4: Computational model description

Service Interface Method Description

Model Repo

/vinnsl/description/create POST Creating a

Neural Net-

work descrip-

tion object

/vinnsl/description/:id GET Returning

a Neural

Network de-

scription

/vinnsl/description/run/instance/:id POST Run a new in-

stance

/vinnsl/description/:id/instances GET List of running

Simulation

Services

/dockerhub/:user GET Getting

Docker im-

ages of the

user

Simulation

/train POST Perform train-

ing

/test POST Perform test-

ing

logs GET Produce logs

for a spe-

cific Neural

Network

Models DB Stores all the relevant on Neural Networks

47

Thus, this module of microservices is providing all necessary functionality

to allow robust and scalable neural network simulation environment.

4.5 UI Module

The UI module is the main component which enables user-friendly access to

the platform services.

N2Sky was developed with a focus on the user-centered design. Front-end

architecture was designed and developed by my colleague Andrii Fedorenko[13].

Front-end design fully reflects not only functional and business requirements

of the different types of users, but also it is composed in the same manner as

other parts of the application. That means that all the front-end services are

composed of Docker containers and put into groups, so front-end module can

fully benefit from the overall system design. Moreover, some Front-end design

decisions were inspired by microservices architecture. Place of the frontend

service is right in the center, as it provides all the users with endpoints, which

is presented on Figure 26.

Figure 26: User interface

The Frontend service provides the main way of communicating with an

application. It responsibility can be split into three main categories, according

to the business needs of the users:

• Arbitrary user requests - requests to use a certain neural network and

experiment with existing solutions,

48

• Developer requests - requests from neural network developers, who are

aiming to upload their solutions,

• Administration requests - requests from the administrator of the N2Sky

platform, who is responsible for management of the system.

It is important to mention that services and databases, which were imple-

mented during the N2Sky architecture project are heterogeneous and using

different technologies. This was possible by adapting microservices architec-

ture and designing communication in a unified way.

As a result, by implementing architectural changes to both infrastructure

and software levels of the N2Sky platform, we achieve higher scalability and

make the platform more suitable for usage in a cloud environment. The shift to

new technologies, as container base execution environment and orchestration

tools for load and deployment management, drastically increased efficiency

and scalability of N2Sky neural network platform for future development.

49

5 Development Guide

This Chapter provides guidelines on environmental setup and neural network

and machine learning developement frameworks. We use Ubuntu 16.04 Server

as a main OS for these guidelines.

5.1 Cloud Infrastructure Guide

As we choose OpenStack as a first cloud infrastructure provider, therefore

these guidelines are relevant to the OpenStack distribution.

OpenStack is a quite complex software product, and its full configuration

requires some effort, which is not always suitable if we aim for fast develop-

ment. There exists OpenStack distribution, which is called DevStack, which

is specifically created to deploy OpenStack within a shorter time frame. It

tracks the same number of repositories as main distribution but requires fewer

resources to bring OpenStack up.

We differentiate between two use cases of the DevStack installation, which

are a bit different in details. The first option would be to install DevStack on

the bare metal and the second option is to install it inside a virtual machine.

5.1.1 Environment Setup

DevStack installation script should be executed with an account, which has

sudo privileges. Therefore, it is needed to create a user with right permissions

and assign a directory to him.

1 sudo useradd −s / bin /bash −d /opt/ s tack −m stack

2 echo ” stack ALL=(ALL) NOPASSWD: ALL” | sudo tee

/ e t c / sudoers . d/ s tack

Listing 2: DevStack user creation

5.1.2 DevStack Manual Installation

After cloning a DevStack repository, it is essential to edit configuration file

according to the settings of the OS. DevStack configuration is managed by

the local.conf file. It consists of several sections, each of which starts with the

header of the following format.

50

1 ’ [[’ <phase> ’ | ’ <con f i g− f i l e −name> ’]] ’

Listing 3: DevStack configuration header specification

There are several phases, which will be executed during the OpenStack

installation:

• local - loads the environmental variables specified in local header

• pre-install -will be executed after system packages installation, but be-

fore any service,

• install - will be executed, after all, services are pulled from repositories

and installed,

• post-config - will load services configuration right before the start of the

services,

• extra - will be executed after all services are installed and run

The first section which is defining global settings of the DevStack is called

local, and it holds the network configuration along with security settings.

51

1 [[l o c a l | l o c a l r c]]

2

3ADMINPASSWORD=password

4DATABASEPASSWORD=password

5RABBIT PASSWORD=password

6SERVICE PASSWORD=password

7

8 HOST IP=172 .16 .116 .5

9 IP VERSION=4

10Q USE SECGROUP=TRUE

11FLOATINGRANGE=” 172 . 16 . 116 . 0/24 ”

12FIXED RANGE=” 10 . 0 . 0 . 0 / 24 ”

13Q FLOATING ALLOCATION POOL=s t a r t =172 .16 .116 .65 , end=172.16 .116 .126

14PUBLICNETWORKGATEWAY=” 172 . 1 6 . 1 16 . 2 ”

15PUBLIC INTERFACE=enp0s3

Listing 4: DevStack main configuration file

It is important to configure the networking component of the DevStack

properly so that the instances will be available from a host machine and other

machines on the network. To ensure this, it is important to setup host IP

address the same as the machine, where DevStack is going to be installed. The

floating range is used to determine, which pool of IP addresses will be used

to allocate IP addresses to the spawned instances. It is possible to manually

set up the pool of the addresses. Public interface and public network are used

to specify which network adapter should be used to connect to the external

network and which gateway to use to access the Internet.

Next useful setting is repositories and branches for OpenStack services.

They can be configured separately, to use a specific version of the service.

1

2NOVAREPO=\$GIT BASE/openstack /nova . g i t

3NOVABRANCH=master

Listing 5: DevStack components repository specification

To enable monitoring capabilities, it is possible to activate a Vitrage plugin,

which is responsible for pooling the monitoring information from the Open-

Stack services. To do that, we need to add following lines to the configuration

file.

52

1

2 [[l o c a l | l o c a l r c]]

3 enab l e p lug in v i t r a g e https : // g i t . openstack . org / openstack / v i t r a g e

4

5 [[post−c on f i g | \$NOVACONF]]

6 [DEFAULT]

7 n o t i f i c a t i o n t o p i c s = n o t i f i c a t i o n s , v i t r a g e n o t i f i c a t i o n s

8 n o t i f i c a t i o n d r i v e r=messagingv2

9

10 [[post−c on f i g | \$NEUTRONCONF]]

11 [DEFAULT]

12 n o t i f i c a t i o n t o p i c s = n o t i f i c a t i o n s , v i t r a g e n o t i f i c a t i o n s

13 n o t i f i c a t i o n d r i v e r=messagingv2

14

15 [[post−c on f i g | \$CINDER CONF]]

16 [DEFAULT]

17 n o t i f i c a t i o n t o p i c s = n o t i f i c a t i o n s , v i t r a g e n o t i f i c a t i o n s

18 n o t i f i c a t i o n d r i v e r=messagingv2

19

20 [[post−c on f i g | \$HEAT CONF]]

21 [DEFAULT]

22 n o t i f i c a t i o n t o p i c s = n o t i f i c a t i o n s , v i t r a g e n o t i f i c a t i o n s

23 n o t i f i c a t i o n d r i v e r=messagingv2

24

25 [[post−c on f i g | \$AODHCONF]]

26 [o s l o me s s a g i n g n o t i f i c a t i o n s]

27 d r i v e r = messagingv2

28 t op i c s = n o t i f i c a t i o n s , v i t r a g e n o t i f i c a t i o n s

Listing 6: DevStack enabling monitoring of services

This will enable notifications push from services to Vitrage monitoring

service.

To enable support for Docker hypervisor, to be able to deploy containers

without a VM following configuration should be applied. First it is needed to

enable docker plugin.

1

2 rm −r f / opt/ s tack /nova−docker
3 sudo mkdir −p /opt/ stack

4 sudo g i t c l one https : // g i t . openstack . org / openstack /nova−docker
/opt/ s tack /nova−docker

5 cd /opt/ s tack /nova−docker
6 sudo pip i n s t a l l .

Listing 7: DevStack download Docker hypervisor

53

After that, we should configure OpenStack to include docker hypervisor in

the distribution.

1

2 echo ”\$GLANCE API CONF” >> l o c a l . conf

3 echo ” [DEFAULT] ” >> l o c a l . conf

4 echo con ta in e r f o rmat s=ami , a r i , aki , bare , ovf , ova , docker >>

l o c a l . conf

5 echo >> l o c a l . conf

6 echo ”\$NOVACONF” >> l o c a l . conf

7 echo ” [DEFAULT] ” >> l o c a l . conf

8 echo compute dr iver=novadocker . v i r t . docker . DockerDriver >>

l o c a l . conf

9 echo >> l o c a l . conf

Listing 8: DevStack enable Docker hypervisor support

To bootstrap DevStack after configuration, only one command should be

executed, keep attention that it is executed by a user with right permissions.

1

2 . / s tack . sh

Listing 9: DevStack bootstrap script

It is important to mention that DevStack installation is not persistent upon

restart - that means that all data and settings including stack volumes, bridge

configuration, and routing settings will be lost. Currently, there is no way to

prevent this behavior. To bring cloud infrastructure online after reboot it is

enough to run stack script again.

5.1.3 DevStack - Virtual Environment

The second option on how to create a development cloud environment is to use

a virtual machine. The challenges in this method are that there will be nested

virtualization involved and network settings should be properly configured to

allow traffic and connectivity between all the nodes. Two technologies, which

are used in such type of deployment are:

• VirtualBox - it is easier to deal with dependencies in case if something

goes wrong,

• Vagrant - which provides a robust way to configure virtual environments.

Both of these distributions can be installed in a straightforward way.

54

1

2 sudo apt−get i n s t a l l v i r tua lbox

3 sudo apt−get i n s t a l l vagrant

Listing 10: Cloudify environment setup

As Vagrant is providing a configuration file to unify the deployment of

virtual machines, we should create one for DevStack deployment.

1

2# −∗− mode : ruby −∗−
3# vi : s e t f t=ruby :

4

5 c on f i g .vm. box = ”bento/ubuntu−16.04”
6 c on f i g .vm. hostname = ’ devstack ’

7

8 c on f i g .vm. network ” forwarded port ” , guest : 80 , host : 80

9 c on f i g .vm. network ” forwarded port ” , guest : 5000 , host : 5000

10 c on f i g .vm. network ” forwarded port ” , guest : 9696 , host : 9696

11 c on f i g .vm. network ” forwarded port ” , guest : 8774 , host : 8774

12 c on f i g .vm. network ” forwarded port ” , guest : 35357 , host : 35357

13 c on f i g .vm. network ” pr ivate network ” , ip : ” 171 . 1 5 . 1 9 . 3 1 ”

14

15 c on f i g .vm. prov ide r : v i r tua lbox do | v |
16 v . customize [”modifyvm” , : id , ”−−memory” , 8096]

17 v . customize [”modifyvm” , : id , ”−−cpus” , 4]

18 end

19

20 c on f i g .vm. p rov i s i on ” s h e l l ” , path : ” d e v s t a c k i n s t a l l . sh”

21

22 end

Listing 11: Vagrant VM settings

In this configuration file, we specify, which image should be installed in

the virtual machine, which network routing rules should apply to it and which

virtualization provider should be used. In this case, it is VirtualBox provider

with memory limitation of 8096Mb and four cores.

Also, it is to specify how DevStack will be installed. To provide Vagrant

with DevStack configuration, we specify that certain script should be run after

virtual machine deployment.

55

1

2#!/ bin /bash

3

4 echo ”Spinning v i r t u a l machine . . . ”

5 echo ” I n s t a l l i n g Git . . . ”

6 sudo apt−get i n s t a l l g i t

7

8 echo ”DevStack i n s t a l l a t i o n setup . . . ”

9 sudo useradd −s / bin /bash −d /opt/ s tack −m stack

10 echo ” stack ALL=(ALL) NOPASSWD: ALL” | sudo tee

/ e t c / sudoers . d/ s tack

11 su − s tack −c ”cd /opt/ s tack && g i t c l one

https : // g i t . openstack . org / openstack−dev/ devstack ”
12 su − s tack −c ” cat > /opt/ s tack / devstack / l o c a l . conf << END

13 [[l o c a l | l o c a l r c]]

14 enab l e p lug in v i t r a g e https : // g i t . openstack . org / openstack / v i t r a g e

15

16 HOST IP=\$ (ip addr | grep ’ s t a t e UP’ −A2 | t a i l −n1 | awk ’{ pr in t
\$2 } ’ | cut −f 1 −d ’ / ’)

17 HOST IP IFACE=eth1

18FLAT INTERFACE=br100

19PUBLIC INTERFACE=eth1

20FLOATINGRANGE=192.168.56 .224/27

21

22DATABASEPASSWORD=password

23RABBIT PASSWORD=password

24SERVICE TOKEN=password

25SERVICE PASSWORD=password

26ADMINPASSWORD=password

27

28 [[post−c on f i g | \$NOVACONF]]

29 [DEFAULT]

30 n o t i f i c a t i o n t o p i c s = n o t i f i c a t i o n s , v i t r a g e n o t i f i c a t i o n s

31 n o t i f i c a t i o n d r i v e r=messagingv2

32

33 [[post−c on f i g | \$NEUTRONCONF]]

34 [DEFAULT]

35 n o t i f i c a t i o n t o p i c s = n o t i f i c a t i o n s , v i t r a g e n o t i f i c a t i o n s

36 n o t i f i c a t i o n d r i v e r=messagingv2

37

38 [[post−c on f i g | \$CINDER CONF]]

39 [DEFAULT]

40 n o t i f i c a t i o n t o p i c s = n o t i f i c a t i o n s , v i t r a g e n o t i f i c a t i o n s

41 n o t i f i c a t i o n d r i v e r=messagingv2

42

43 [[post−c on f i g | \$HEAT CONF]]

56

44 [DEFAULT]

45 n o t i f i c a t i o n t o p i c s = n o t i f i c a t i o n s , v i t r a g e n o t i f i c a t i o n s

46 n o t i f i c a t i o n d r i v e r=messagingv2

47

48 [[post−c on f i g | \$AODHCONF]]

49 [o s l o me s s a g i n g n o t i f i c a t i o n s]

50 d r i v e r = messagingv2

51 t op i c s = n o t i f i c a t i o n s , v i t r a g e n o t i f i c a t i o n s

52END”

53

54 echo ” I n s t a l l i n g DevStack . . . ”

55 su − s tack −c ”cd /opt/ s tack / devstack && ./ stack . sh”

56

57 end

Listing 12: DevStack VM configuration

This configuration file is slightly different from the installation on the bare

metal, as a virtual machine will have different network topology. Therefore

we need to dynamically specify the IP address of the host and to provide the

script with information on which network interfaces are used in the virtual

machine. After configuration OpenStack can be bootstrapped in the virtual

environment with the following command.

1

2 vagrant up

Listing 13: Spinning Vagrant VM

If everything was finished successfully, following message will appear, and

OpenStack will be available at the specified address.

1

2 vagrant up

3=========================

4 DevStack Component Timing

5 (t imes are in seconds)

6=========================

7 run proce s s 12

8 t e s t w i t h r e t r y 2

9 apt−get−update 9

10 p i p i n s t a l l 271

11 osc 103

12 wa i t f o r s e r v i c e 12

13 g i t t imed 255

14 dbsync 16

15 apt−get 126

57

16−−−−−−−−−−−−−−−−−−−−−−−−−
17 Unaccounted time 271

18=========================

19 Total runtime 1077

20

21 This i s your host IP address : 1 71 . 1 5 . 1 9 . 3 1

22 This i s your host IPv6 address : f e80 : : a00 :27 f f : f e85 : f 5 7 f

23 Horizon i s now ava i l a b l e at http : / / 171 . 1 5 . 1 9 . 3 1 / dashboard

24 Keystone i s s e rv ing at http : / / 171 . 1 5 . 1 9 . 3 1 / i d e n t i t y /

25 The de f au l t u s e r s are : admin and demo

Listing 14: Sample DevStack installation output

Last preparations before actual usage are enabling OpenStack CLI and

changing the default security policy to be able to remotely control instances,

deployed in the cloud. To get necessary privileges on the OpenStack CLI, it is

needed to identify a user in Keystone service. To do that, credentials should

be provided as environmental variables. For convenience, the following file can

be used.

1#!/ usr /bin /env bash

2 export OS AUTH URL=http : / / 171 . 1 5 . 1 9 . 3 1 / i d e n t i t y /v3

3 export OS PROJECT ID=1d9a7fa2144a4df7a76334db1786ea12

4 export OS PROJECT NAME=”admin”

5 export OS USER DOMAIN NAME=”Defau l t ”

6 i f [−z ”\$OS USER DOMAIN NAME”] ; then unset

OS USER DOMAIN NAME; f i

7 export OS PROJECT DOMAIN ID=” de f au l t ”

8 i f [−z ”\$OS PROJECT DOMAIN ID”] ; then unset

OS PROJECT DOMAIN ID; f i

9 unset OS TENANT ID

10 unset OS TENANTNAME

11 export OS USERNAME=”admin”

12 echo ”Please ente r your OpenStack Password f o r p r o j e c t

$OS PROJECT NAME as user $OS USERNAME: ”

13 read −s r OS PASSWORD INPUT

14 export OS PASSWORD=\$OS PASSWORD INPUT

15 export OS REGION NAME=”RegionOne”

16 i f [−z ”\$OS REGION NAME”] ; then unset OS REGION NAME; f i

17 export OS INTERFACE=pub l i c

18 export OS IDENTITY API VERSION=3

Listing 15: Keystone configuration

The settings will depend on the information provided to the DevStack

configuration file before deployment.

58

To open necessary ports and to allow traffic, following rules should be

added to the default security group.

1 nova secgroup−add−r u l e SECURITYGROUPNAME tcp 22 22 0 . 0 . 0 . 0 / 0

2 nova secgroup−add−r u l e SECURITYGROUPNAME icmp −1 −1 0 . 0 . 0 . 0 / 0

Listing 16: Configuring cloud security group

OpenStack can also be configured through the GUI, which is available on

the specified address. The GUI presented on Figure 27.

Figure 27: OpenStack GUI

After successful installation, OpenStack can be used as a cloud infrastruc-

ture provider for the N2Sky platform.

5.2 Orchestration Management Guide

In the current implementation, Cloudify 3.3.1 is used. It is quite outdated,

although Cloudify decided to stop providing support for the older version and

switch the business model to the commercial one. Cloudify Manager will be

deployed on the node within the OpenStack, and it will be accessible through

the GUI and CLI. It is important that OpenStack and host machine networks

are configured properly as Cloudify manager will require the Internet access

while bootstrapping.

The first requirement is to install Python 2.7. It is recommended to use

a virtual environment to isolate the Python distribution from the OS in case

of troubles. Cloudify installation scripts also require virtualenv, in other case,

it will be needed to use sudo. Python and its package manager tool can be

installed simply by following commands.

59

1 i n s t a l l python2 . 7 python−pip

Listing 17: Installing Python distribution

The second requirement is Cloudify CLI, which will communicate with

OpenStack and enable deployment of the virtual machine with Cloudify Man-

ager. Following code is used to install Cloudify CLI and configuration scripts.

It is needed to enable virtual environment before executing following com-

mands.

1 v i r tua l env c l o ud i f y

2 pip i n s t a l l ’ c l o ud i f y ==3.3.1 ’

Listing 18: Installing Cloudify CLI in virtual environment

After Cloudify CLI is installed, it is needed to pull out the configuration

files, which are required by Cloudify bootstrap process.

1 g i t c l one −b 3.3− bu i ld \
2 https : // github . com/ c l oud i f y−cosmo/ c l oud i f y−manager−b lu ep r i n t s . g i t

Listing 19: Fetching Cloudify configuration files

This repository consists of several configuration files for different cloud

infrastructure providers, including OpenStack. The bootstrap script needs

two files to be provided. First one is topology description file, which explains

how Cloudify Manager should be instantiated in the OpenStack. There is no

need to change it, except cloud infrastructure is not configured in a default

manner. The second file is providing inputs for the first one, consisting of

specific setting of the cloud. The following code shows a possible configuration

of the Cloudify inputs file.

1 keystone username : ’demo ’

2 keystone password : ’ password ’

3 keystone tenant name : ’demo ’

4 key s t one u r l : ’ http : / / 171 . 1 5 . 1 9 . 3 1 / i d e n t i t y /v2 . 0/ ’

5 r eg i on : ’ ’

6

7 us e ex i s t i ng manage r keypa i r : f a l s e

8 u s e e x i s t i n g a g e n t k e ypa i r : f a l s e

9

10 s sh key f i l e name : ˜/ . ssh / c l oud i f y−manager . pem

11 agen t p r i va t e key pa th : ˜/ . ssh / c l oud i f y−agent . pem
12

13 manager publ ic key name : ’ c l oud i f y−manager ’

14 agent publ i c key name : ’ c l oud i f y−agent ’
15

60

16 image id : ’4 cb4e4ee−c53f−49f2−9e9d−baa800bc9bf6 ’

17 f l a v o r i d : ’ cloud1 ’

18

19 external network name : ’ publ ic ’

Listing 20: Cloudify Management input specification

Although Cloudify is providing OpenStack support most of the times, it

is not compliant with the last changes. Cloudify is using an outdated ver-

sion of the Keystone OpenStack component, and it is needed to specify it

explicitly. To do that, some changes needs to be applied to the credentials

OpenStack authentification file - specifying that user uses the second version

of the Keystone.

1#!/ usr /bin /env bash

2 export OS AUTH URL=http : / / 171 . 1 5 . 1 9 . 3 1 / i d e n t i t y /v2

3 export OS PROJECT ID=1d9a7fa2144a4df7a76334db1786ea12

4 export OS PROJECT NAME=”admin”

5 export OS USER DOMAIN NAME=”Defau l t ”

6 i f [−z ”\$OS USER DOMAIN NAME”] ; then unset

OS USER DOMAIN NAME; f i

7 export OS PROJECT DOMAIN ID=” de f au l t ”

8 i f [−z ”\$OS PROJECT DOMAIN ID”] ; then unset

OS PROJECT DOMAIN ID; f i

9 unset OS TENANT ID

10 unset OS TENANTNAME

11 export OS USERNAME=”admin”

12 echo ”Please ente r your OpenStack Password f o r p r o j e c t

$OS PROJECT NAME as user $OS USERNAME: ”

13 read −s r OS PASSWORD INPUT

14 export OS PASSWORD=\$OS PASSWORD INPUT

15 export OS REGION NAME=”RegionOne”

16 i f [−z ”\$OS REGION NAME”] ; then unset OS REGION NAME; f i

17 export OS INTERFACE=pub l i c

18 export OS IDENTITY API VERSION=3

Listing 21: OpenStack Authentification for Cloudify

After the process of spawning the virtual machine and installing Cloudify

Manager, the following message will appear.

1 i n s t a l l i n g c l oud i f y−ui . . .
2 c l oud i f y−ui i n s t a l l a t i o n s u c c e s s f u l .

3 deploy ing c l o ud i f y agents

4 c l o ud i f y agents i n s t a l l a t i o n s u c c e s s f u l .

5 boots t rapp ing complete

61

6 management s e r v e r i s up at 10 . 1 0 . 1 0 . 2 27 (i s now s e t as the

d e f au l t management s e r v e r)

Listing 22: Cloudify Bootstrap

After Cloudify manager is installed, we can use it as an orchestration

tool for instances, deployed in the cloud. It will be configured to be used

in a specific cloud environment and provide functionality, described in the

documentation[8].

5.3 Neural Network Development Guide

One of the main goals of the new architecture was a shift from Java lan-

guage to provide a more flexible environment for scientific developers. It was

archived by introducing containers technology, where each neural network ap-

plication can be developed in any language independently, and therefore there

will be no language limitations. As a consequence, after simulation service was

completely separated from other logic of the application, each neural network

application will still need to provide certain guarantees on its interfaces to be

able to communicate with other management components of the system.

Thus, neural network creation guidelines were developed. Technically, each

neural network model should be an application, which is packed into Docker

container with all the necessary dependencies. In this way, we will be able

to provide all necessary guarantees, specifically when this container will be

spawned, it will be able to be used by end-users.

To make the development process as simple and as flexible as possible, we

decided to bring only several requirements:

1. Each machine learning or neural network application should be a web-

service,

2. Each application should provide train and test endpoints,

3. Each application should be packed into a Docker container with all the

libraries and dependencies,

4. Each application should serialize trained model and respond it after

training phase,

5. Developers should provide data format specification - description on

which data formats are accepted by their service

62

6. It is preferred, that each application is designed and described according

to the ViNNSL Specification language.

It becomes possible to develop in any programming language and use any

libraries with this approach. These requirements are only ones, and if ful-

filled the applications can fully utilize benefits provided by architecture and

infrastructure of the platform.

This guide refers to the backpropagation neural network robust imple-

mentation in Python using Keras framework, Theano computational library,

HDF5/JSON serialization, and Flask web framework.

First, a developer should be familiar with ViNNSL specification language,

as data flow between the application and other components is performed based

on the ViNNSL template.

1

2 l e t parameters = new Schema({
3 parameter : Str ing ,

4 de fau l tVa lue : Str ing ,

5 po s s i b l eVa lu e s : [S t r ing]

6 }) ;
7

8 l e t connec t i onsShor t cut s = {
9 from : Str ing ,

10 to : Str ing ,

11 i sFu l lConnected : Boolean

12 } ;
13

14 l e t inputOutputLayer = new Schema({
15 nodesId : [S t r ing] ,

16 amount : Number

17 }) ;
18

19 l e t hiddenLayer = new Schema({
20 id : Str ing ,

21 nodesId : [S t r ing] ,

22 amount : Number

23 }) ;
24

25

26 l e t endpoints = new Schema({
27 name : Str ing ,

28 endpoint : S t r ing

29 }) ;
30

63

31 l e t image = new Schema({
32 imageType : Str ing ,

33 endpoint : S t r ing

34 }) ;
35

36 l e t VINNSL Description NN = new Schema({
37 metadata : {
38 name : { type : S t r ing } ,
39 d e s c r i p t i o n : { type : S t r ing } ,
40 paradigm : { type : S t r ing } ,
41 createdOn : Date ,

42 ve r s i on : {
43 major : { type : S t r ing } ,
44 minor : { type : S t r ing }
45 }
46 } ,
47 c r e a t o r : {
48 name : { type : S t r ing } ,
49 contact : { type : S t r ing }
50 } ,
51 problemDomain : {
52 propagationType : {
53 propType : Str ing ,

54 l earningType : S t r ing

55 } ,
56 app l i c a t i o nF i e l d : [S t r ing] ,

57 problemType : { type : S t r ing } ,
58 networkType : { type : S t r ing }
59 } ,
60 endpoints : [endpoints] ,

61 s t r u c tu r e : {
62 inputLayer : inputOutputLayer ,

63 hiddenLayer : [hiddenLayer] ,

64 outputLayer : inputOutputLayer

65 } ,
66 connec t i ons : {
67 fu l lyConnected : {
68 i sConnected : Boolean

69 } ,
70 sho r t cu t s : {
71 i sConnected : Boolean ,

72 connec t i ons : [connec t i onsShor t cut s]

73 }
74 } ,
75 parameters : {
76 input : [parameters] ,

64

77 output : S t r ing

78 } ,
79 data : {
80 d e s c r i p t i o n : { type : S t r ing } ,
81 t ab l eDe s c r i p t i on : { type : S t r ing } ,
82 f i l e D e s c r i p t i o n : { type : Str ing , Defau l t : ”no f i l e needed”}
83 } ,
84 executionEnvironment : {
85 lastRun : Date ,

86 isRunning : { type : Boolean , Defau l t : f a l s e } ,
87 hardware : Str ing ,

88 i sPub l i c : Boolean ,

89 image : image

90 }
91 }) ;

Listing 23: ViNNSL Specification Adaptation

Currently, this specification language is defined to be able to describe neu-

ral network topologies, but in the future, it should be able to reflect any ma-

chine learning algorithm. Mostly, there are three crucial components: training

data, labels of the training data and parameters of the model. Neural net-

works are more complex in this case, as they imply complex topologies with

several heterogeneous layers. Using such schema as a reference, the developer

should be able to produce a mapping between ViNNSL specification and his

neural network implementation. The example of such mapping can look like

this.

1

2 de f p a r s e v i nn s l (v i nn s l) :

3

4 nn s t ruc tu r e = {}
5

6 par s ed j s on = json . l oads (v i nn s l)

7 parameters = par s ed j s on [’ parameters ’] [’ input ’]

8 s t r u c tu r e = par s ed j s on [’ s t r u c tu r e ’]

9

10 l e a r n i n g r a t e = parameters [0] [’ de fau l tVa lue ’]

11 b ias Input = parameters [1] [’ de fau l tVa lue ’]

12 biasHidden = parameters [2] [’ de fau l tVa lue ’]

13 momentum = parameters [3] [’ de fau l tVa lue ’]

14 act ivat ionFunct ionOutput = parameters [4] [’ de fau l tVa lue ’]

15 act ivat ionFunct ionHidden = parameters [5] [’ de fau l tVa lue ’]

16 th r e sho ld = parameters [6] [’ de fau l tVa lue ’]

17 t a r g e t da ta = parameters [7] [’ de fau l tVa lue ’]

18 number epochs = parameters [8] [’ de fau l tVa lue ’]

65

19

20 connec t i ons = par s ed j s on [’ connec t i ons ’]

21

22 f u l l y c onn e c t ed = connect i ons [’ fu l lyConnected ’] [’ i sConnected ’]

23 sho r t cu t s = connect i ons [’ s ho r t cu t s ’]

24 s ho r t cu t s c onne c t i on s = sho r t cu t s [’ connec t ions ’]

25

26 pr in t (f u l l y c onn e c t ed)

27

28 i n pu t l a y e r = s t ru c tu r e [’ inputLayer ’]

29 input neurons = inpu t l a y e r [’ amount ’]

30

31 outputLayer = s t ru c tu r e [’ outputLayer ’]

32 output neurons = outputLayer [’ amount ’]

33

34 h idden l aye r s = s t ru c tu r e [’ hiddenLayer ’]

35 h idden l aye r s neu rons = []

36

37 f o r l a y e r in h idden l ay e r s :

38 h idden l aye r s neu rons . append (l ay e r [’ amount ’])

39

40 nn s t ruc tu r e [’ input neurons ’] = input neurons

41 nn s t ruc tu r e [’ output neurons ’] = output neurons

42 nn s t ruc tu r e [’ h i dden l aye r s ’] = h idden l aye r s neu rons

43

44 nn s t ruc tu r e [’ l e a r n i n g r a t e ’] = l e a r n i n g r a t e

45 nn s t ruc tu r e [’ b ia s Input ’] = b ias Input

46 nn s t ruc tu r e [’ biasHidden ’] = biasHidden

47 nn s t ruc tu r e [’momentum ’] = momentum

48 nn s t ruc tu r e [’ act ivat ionFunct ionOutput ’] =

act ivat ionFunct ionOutput

49 nn s t ruc tu r e [’ act ivat ionFunct ionHidden ’] =

act ivat ionFunct ionHidden

50 nn s t ruc tu r e [’ th r e sho ld ’] = thre sho ld

51 nn s t ruc tu r e [’ t a r g e t da ta ’] = ta rg e t da ta

52 nn s t ruc tu r e [’ number epochs ’] = number epochs

53

54 re turn nn s t ruc tu r e

Listing 24: ViNNSL Parser

This information which is contained in ViNNSL should be enough to re-

produce any single neural network topology. Therefore, the network can be

created, and training can be performed.

1

2 de f t ra in mode l (t r a in ing da ta , d e s c r i p t i on , model id) :

66

3

4 RemoteMonitor (root=’ http :// l o c a l h o s t :9000 ’)

5

6 model = Sequent i a l ()

7

8 dimensions = t r a i n i n g da t a [0] . s i z e

9

10 i n pu t l a y e r = de s c r i p t i o n [’ input neurons ’]

11 output l aye r = de s c r i p t i o n [’ output neurons ’]

12 h idden l aye r s = de s c r i p t i o n [’ h i dden l ay e r s ’]

13 t a r g e t da ta = de s c r i p t i o n [’ t a r g e t da ta ’]

14 number epochs = in t (d e s c r i p t i o n [’ number epochs ’])

15

16 t a r g e t da ta = np . array (eva l (t a r g e t da ta) , ” f l o a t 3 2 ”)

17

18 l e a r n i n g r a t e = f l o a t (d e s c r i p t i o n [’ l e a r n i n g r a t e ’])

19 momentum = f l o a t (d e s c r i p t i o n [’momentum ’])

20 act ivat ionFunct ionOutput =

de s c r i p t i o n [’ act ivat ionFunct ionOutput ’]

21 act ivat ionFunct ionHidden =

de s c r i p t i o n [’ act ivat ionFunct ionHidden ’]

22

23 model . add (Dense (i nput l aye r , input dim=dimensions ,

a c t i v a t i o n=act ivat ionFunct ionHidden))

24 f o r l a y e r in h idden l ay e r s :

25 model . add (Dense (layer , input dim=dimensions ,

a c t i v a t i o n=act ivat ionFunct ionHidden))

26 model . add (Dense (output layer ,

a c t i v a t i o n=act ivat ionFunct ionOutput))

27

28 sgd = opt im i z e r s .SGD(l r=l e a rn i n g r a t e , decay=1e−6,
momentum=momentum, nes te rov=False)

29 model . compi le (l o s s=’ mean squared error ’ , opt imize r=sgd ,

met r i c s=[’ b inary accuracy ’])

30

31 model . f i t (t r a in ing da ta , t e s t i ng da ta , epochs=epoche ,

verbose=2, c a l l b a ck s =[remote])

32

33 model . save (’ models /my model . h5 ’)

34

35 re turn model

Listing 25: Generic backpropogation Neural Network

To be integrated into the system, a developer should provide two interfaces,

which are expecting to receive ViNNSL compliant file both for training and

for testing. Therefore, an application should be able to communicate over the

67

network and provide these two endpoints.

1

2 de f p a r s e v i nn s l (v i nn s l) :

3

4 @app . route (’ / t r a i n ’ , methods=[’GET’ , ’POST ’])

5 de f t r a i n () :

6 v i n n s l d e s c r i p t i o n = reque s t . form [’ v i nn s l ’]

7 t r a i n i n g da t a = reque s t . form [’ t r a i n i n g da t a ’]

8 model id = reques t . form [’ model id ’]

9

10 d e s c r i p t i o n = v inn s l d e code r . p a r s e v i nn s l (v i n n s l d e s c r i p t i o n)

11

12 model = nn . t ra in mode l (d e s c r i p t i on , model id)

13 model . save (’ models /my model . h5 ’)

14 proc = subproces s . Popen ([’ python ’ ,

’ s e r i a l i z a t i o n / encoder . py ’ , ’ models /my model . h5 ’] ,

s tdout=subproces s . PIPE ,

15 s t d e r r=subproces s .STDOUT)

16 re turn proc . communicate () [0]

17

18 @app . route (’ / t e s t ’ , methods=[’POST ’])

19 de f t e s t () :

20 model = reque s t . form [’model ’]

21

22 with i o . open (’ models /model . j son ’ , ’w ’ , encoding=’ utf−8 ’) as f :

23 f . wr i t e (model)

24

25 i f os . path . e x i s t s (’ models /model . h5 ’) :

26 os . remove (’ models /model . h5 ’)

27

28 p = subproces s . Popen ([’ python ’ , ’ s e r i a l i z a t i o n / decoder . py ’ ,

’ models /model . j son ’ , ’ models /model . h5 ’] ,

29 stdout=subproces s . PIPE ,

30 s t d e r r=subproces s .STDOUT)

31 p s t a tu s = p . wait ()

32

33 model = load model (’ models /model . h5 ’)

34 p r ed i c t i o n s = model . p r ed i c t (t e s t i n g da t a) . round ()

35

36 re turn s t r (p r e d i c t i o n s)

Listing 26: Server endpoints

Train and Test endpoints are responsible for performing training and test-

ing of the neural network. Although there are no requirements on the imple-

mentation language or paradigm itself, there is a specification of these inter-

68

faces which should be met.

1. Train - accepts training data along with a ViNNSL description of the

network and returns a serialized model in JSON format,

2. Test - accepts testing data alongside serialized model and responds with

predictions data.

As developers will need to serialize and de-serialize their models, they need

to choose proper method or library for that. That choice will fully depend on

the developer himself, as different languages and neural network libraries are

producing different output. Taking the responsibility of format mapping out

of the system, it becomes possible to work with any service which is compliant

with requirements of the system, which are platform independent and easy to

meet.

As an example of Keras model serialization, an N2Sky backpropagation

network is serialized using HDF5 format and transformed to JSON.

After the training phase, a compiled model is returned to our platform and

stored for future testing by other users. The process of creating or adapting an

existing application to such requirements is quite straightforward and doesn’t

require much re-factoring.

As the last step, any neural network developer should be able to produce a

Docker artefact to upload his application to the N2SkyC system. Docker file is

a configuration file, which consists of all the dependencies of the application.

The Dockerfile for the neural network, which was taken as an example will

look like this.

1

2FROM debian : 8

3

4ENV LANG=C.UTF−8 LC ALL=C.UTF−8
5

6RUN apt−get update −−f i x−miss ing && apt−get i n s t a l l −y wget bzip2

ca−c e r t i f i c a t e s \
7 l i b g l i b 2 .0−0 l i bx ex t 6 l ibsm6 l i bx r ende r1 \
8 g i t mercur ia l subver s i on

9

10RUN echo ’ export PATH=/opt/conda/bin :\$PATH’ >

/ e tc / p r o f i l e . d/conda . sh && \
11 wget −−qu i e t \
12 https : // repo . continuum . i o / a rch ive /Anaconda2−5.0.1−Linux−x86 64 . sh\

69

13 −O ˜/anaconda . sh && \
14 /bin /bash ˜/anaconda . sh −b −p /opt/conda && \
15 rm ˜/anaconda . sh

16

17RUN apt−get i n s t a l l −y cu r l grep sed dpkg && \
18 TINI VERSION=‘ cu r l

https : // github . com/ k r a l l i n / t i n i / r e l e a s e s / l a t e s t | grep −o
”/v .∗\ ”” | sed ’ s : ˆ . . \ (. ∗ \) . $: \ 1 : ’ ‘ && \

19 cu r l −L
20 ” https : // github . com/ k r a l l i n / t i n i /\
21 r e l e a s e s /download/v\${TINI VERSION}/ \
22 t i n i $ {TINI VERSION} . deb” > t i n i . deb && \
23 dpkg − i t i n i . deb && \
24 rm t i n i . deb && \
25 apt−get c l ean

26

27ENV PATH /opt/conda/bin :\PATH
28

29# Jupyter has i s s u e s with being run d i r e c t l y :

https : // github . com/ ipython / ipython / i s s u e s /7062

30COPY backprop / root /

31

32# Expose Ports f o r TensorBoard (6006) , Ipython (8888)

33EXPOSE 6006 8888 5000

34

35WORKDIR ”/ root ”

36

37RUN conda i n s t a l l l i b g c c

38RUN pip i n s t a l l keras

39RUN pip i n s t a l l −Iv t en so r f l ow==1.3

40RUN pip i n s t a l l h5json

41

42CMD [”python” , ” s e r v e r . py”]

Listing 27: Dockerfile example configuration

Dockerfile specifies the sequence of commands which will be executed when

the container will be deployed. This Dockerfile can be deployed to the open

community repositories, stored locally or stored in any remote repositories.

When neural network developer wants to submit his model to the N2Sky plat-

form, he will be prompted to provide a path to the Dockerfile of his application.

Based on the information provided, the N2Sky system will generate necessary

configuration files to deploy the application to the cloud infrastructure and

provide access to it.

This guide covers all the requirements for the end developer who wants to

70

participate in the N2Sky community. Details of availability and GUI use-cases

are designed and developed by my colleague Andrii Fedorenko. We believe that

such requirements will not be limiting factors to the developers as they are

receiving full flexibility and language independence in comparison to other

systems or the previous revision of N2Sky.

6 Conclusions and Outlook

The N2Sky platform, its architecture, and implementation, which were the

main focuses of this master thesis, allowed to deeply analyze the difference

in the approaches to the software architechture. During the research several

crucial points were discovered, which can drastically influence the robustness

of the development process. Such topics include optimization of the process of

automated delivery and deployment and differences in the approaches of the

system monitoring. Nevetheless, right desingn decisions and well argumented

technology stack can overcome the difficulties.

The research started with the analysis of the architectural design decisions

of the N2Sky followed by the source code analysis. After analysis of the current

state of the system were delivered limitations and possible bottlenecks both in

the design and chosen technological stack. Followed by analysis of the existing

software development approaches with a focus on the microservices architec-

ture which led to the formulation of the insights on how such systems should

be composed and which features are relevant for the robustness of the software.

Taking into consideration delivered analysis results application functionality

decomposition guidelines were produced. They describe on which topics are

relevant and which suggestions should be considered, while decomposing appli-

cation into the microservices. To enable benefits of microservices architecture,

it was necessary to choose a right technological task. After research of the

existing solutions, several of them were picked to be part of the new N2Sky

implementation.

As a result, previous N2Sky was architecture decomposed into microser-

vices, and new architecture was delivered and implemented. To provide de-

tailed insights on the process of both infrastructure deployment and devel-

opment, several guidelines were produced. Firstly, they cover the process of

N2Sky cloud infrastructure deployment starting from installation and config-

uration of the OpenStack platform both on bare metal and virtual machines.

Secondly, they provide information on the bootstrapping and configuration

71

of the Cloudify orchestration management tool. Last, the developer guide-

lines for neural network researchers and developers are providing conceptual

descriptions on how to implement new neural networks in a way that they

will be compliant with the N2Sky platform. As any live system N2Sky is de-

veloping further and new possibilities are available now, after the re-design

project.

6.1 Future Work

N2Sky can be developed in several directions to extend the platform and pro-

vide more functionality:

Cloudify and OpenStack.

Although there two products are working will together, there are few draw-

backs in the current versions. OpenStack is shifting to the full container or-

chestration support, but the service which will be responsible for that is still

in development. Cloudily, on the other hand, is depreciating its support for

native container virtualization for OpenStack. To overcome these difficulties,

it is suggested to use middleware between OpenStack and Cloudify, as Kuber-

netes, which will give more control and flexibility to control virtual resources

of the cloud.

OpenStack in Microservices.

Currently, OpenStack is deployed as an application on the bare-metal with-

out the usage of any modernization technologies. Possible development direc-

tion would be to re-design OpenStack services in a such a way so that they

can be run as containers on the host machine.

Smart Load balancing.

One of the possible extensions of the system can a unified load balancing

system, which will be responsible for routing user requests depending on the

current load of the services. Heuristics can be developed to estimate the

average load and computational complexity to provide necessary resources.

Using the monitoring system, it will be possible to collect usage and load data

and use the N2Sky system itself to build predictive models.

DevOps and Repositories.

Cloudify provides a certain level of versioning of the services, but in regards

internal services development the management of the source code is handled

by developers themselves. One of the possible extension could be an internal

72

DevOps server, which will be responsible for the whole project deployment

and testing.

ViNNSL extension.

Currently, ViNNSL specification language provides support only for neural

network description. One of the possible extension could be the new specifica-

tion of the ViNNSL, which supports other machine learning algorithms. New

architecture enables deployment of any machine learning and neural network

services. Therefore such extension will be easy to implement.

Deep Learning Support.

Deep learning is highly popular topic nowadays, and it will be beneficial to

add support for stacking several neural networks together. Combines with the

support of other machine learning algorithms, such extension will be highly

appreciated by the scientific community.

This topics are highly interesting and can be considered as future develop-

ment perspective of the N2Sky platform.

73

References

[1] Abbot, M. L., and Fischer, M. T. The Art of Scalability. Addison-

Wesley Professional, Boston, 2009. ISBN: 978-0134032801.

[2] Andrew Tulloch. DNNGraph. [online]. https://github.com/

ajtulloch, last viewed January 2018.

[3] Apache. Maven. [online]. https://maven.apache.org/, last viewed

January 2018.

[4] Artelnics. Neural Designer. [online]. https://www.neuraldesigner.

com/, last viewed January 2018.

[5] Beran, P. P., Vinek, E., Schikuta, E., and Weishaupl, T. Vinnsl

- the Vienna neural network specification language. In Neural Networks,

2008. IJCNN 2008.(IEEE World Congress on Computational Intelli-

gence). IEEE International Joint Conference on (2008), IEEE, pp. 1872–

1879.

[6] Binz, T., Breiter, G., Leyman, F., and Spatzier, T. Portable cloud

services using tosca. IEEE Internet Computing 16, 3 (2012), 80–85.

[7] Canonical Ltd. Infrastructure for container projects. [online], 2004.

https://linuxcontainers.org/, last viewed January 2016.

[8] Cloudify, Inc. Dockerhub. [online], 2018. https://hub.docker.com/,

last viewed January 2017.

[9] DistributedDataMining Project. DistributedDataMining Project.

[online]. https://www.distributeddatamining.org/, last viewed Jan-

uary 2018.

[10] Docker, Inc. Docker architecture. [online], 2018.

https://docs.docker.com/engine/docker-overview/

#what-can-i-use-docker-for/, last viewed January 2017.

[11] Docker, Inc. Openstack plugin. [online], 2018. http://docs.

getcloudify.org/3.3.1/plugins/openstack/, last viewed January

2017.

[12] Evans, E. Domain-driven design: Tackling Complexity in the Heart of

Software. Addison-Wesley, Boston, 2003. ISBN: 978-0321125217.

74

http://docs.getcloudify.org/3.3.1/plugins/openstack/
https://github.com/ajtulloch
https://github.com/ajtulloch
http://docs.getcloudify.org/3.3.1/plugins/openstack/
https://linuxcontainers.org/
https://docs.docker.com/engine/docker-overview/#what-can-i-use-docker-for/
https://www.neuraldesigner.com/
https://hub.docker.com/
https://docs.docker.com/engine/docker-overview/#what-can-i-use-docker-for/
https://maven.apache.org/
https://www.neuraldesigner.com/
https://www.distributeddatamining.org/

[13] Fedorenko, A., Adamenko, A., and Schikuta, E. N2Sky - A Neu-

ral Network Problem Solving Environment Fostering Virtual Resources.

In Neural Networks, 2008. IJCNN 2018.(IEEE World Congress on Com-

putational Intelligence). IEEE International Joint Conference on (2008),

IEEE.

[14] GigaSpaces Technologies. Clodify. [online], 2017. http://docs.

getcloudify.org/3.4.1/intro/what-is-cloudify/, last viewed Jan-

uary 2016.

[15] Huqqani, A. A., Li, X., Beran, P. P., and Schikuta, E. N2Cloud:

Cloud based neural network simulation application. In Neural Networks

(IJCNN), The 2010 International Joint Conference on (2010), IEEE.

[16] Merkel, D. Docker: lightweight linux containers for consistent devel-

opment and deployment. Linux Journal 2014, 239 (2014), 2.

[17] Open-Source. Deeplearning4j. [online]. https://deeplearning4j.

org/, last viewed January 2018.

[18] Open-Source. Neuroph. [online]. http://neuroph.sourceforge.net/,

last viewed January 2018.

[19] Oracle Corporation. Jersey. [online]. https://jersey.github.io/,

last viewed January 2018.

[20] Oracle Corporation. Spring Data. [online]. http://projects.

spring.io/spring-data/, last viewed January 2018.

[21] R.T.Fielding. Representational state transfer. [on-

line], 2000. https://www.openstack.org/assets/science/

OpenStack-CloudandHPC6x9Booklet-v4-online.pdf, last viewed

January 2016.

[22] Sage A. Weil and Scott A. and Brandt Ethan and L. Miller

and Darrell D. E. Long. Ceph: A Scalable, High-Performance Dis-

tributed File System. [online], 2018. https://www3.nd.edu/~dthain/

courses/cse40771/spring2007/papers/ceph.pdf, last viewed January

2018.

[23] Schikuta, E., and Beran, P. P. A gridified artificial neural network

resource. In IEEE International Conference on Tools with Artificial In-

telligence (ICTAI 2007) (2007), IEEE.

75

http://neuroph.sourceforge.net/
https://jersey.github.io/
https://www.openstack.org/assets/science/OpenStack-CloudandHPC6x9Booklet-v4-online.pdf
http://docs.getcloudify.org/3.4.1/intro/what-is-cloudify/
http://docs.getcloudify.org/3.4.1/intro/what-is-cloudify/
https://deeplearning4j.org/
https://www3.nd.edu/~dthain/courses/cse40771/spring2007/papers/ceph.pdf
https://deeplearning4j.org/
https://www.openstack.org/assets/science/OpenStack-CloudandHPC6x9Booklet-v4-online.pdf
https://www3.nd.edu/~dthain/courses/cse40771/spring2007/papers/ceph.pdf
http://projects.spring.io/spring-data/
http://projects.spring.io/spring-data/

[24] Schikuta, E., and Mann, E. N2sky - neural networks as services in

the clouds. In Neural Networks (IJCNN), The 2013 International Joint

Conference on (2013), IEEE, pp. 1–8.

[25] Sefraoui, O., Aissaoui, M., and Eleuldj, M. OpenStack: toward

an open-source solution for cloud computing. International Journal of

Computer Applications 55, 3 (2012).

[26] University of California. Berkeley Open Infrastructure for Network

Computing. [online]. https://boinc.berkeley.edu/, last viewed Jan-

uary 2018.

[27] UnixArena. Openstack architecture and components

overview. [online], 2017. https://www.unixarena.com/2015/08/

openstack-architecture-and-components-overview.html, last

viewed January 2016.

76

https://www.unixarena.com/2015/08/openstack-architecture-and-components-overview.html
https://boinc.berkeley.edu/
https://www.unixarena.com/2015/08/openstack-architecture-and-components-overview.html

List of Figures

1 Neural Designer Screenshot . 5

2 DNNGraph Screenshot . 6

3 Neuroph Software Screenshot 6

4 N2Sky UI Screenshot . 7

5 Previous N2Sky Architecture 9

6 Scaling Strategy Cube . 11

7 Monolythic Deployment Workflow 15

8 Modular Deployment Workflow 15

9 Split Deployment Workflow . 15

10 Previous N2Sky Architechture 17

11 New N2Sky Architecture . 17

12 OpenStack Simplified Architecture 22

13 Nova Architecture . 23

14 Container Architecture . 27

15 Differences between VM and LXC 29

16 Docker Architecture . 32

17 Docker image layers . 34

18 Running container layers . 35

19 State sharing schema . 36

20 Orchestration Responsibility Split 37

21 N2SkyC Architecture . 42

22 N2Sky Business Module . 42

23 Monitoring module . 43

24 Infrastructure module . 44

25 Computational module . 46

26 User interface . 48

27 OpenStack GUI . 59

77

List of Tables

1 Business module description . 43

2 Monitoring module description 44

3 Infrastructure module description 45

4 Computational model description 47

78

Listings

1 Cloudify TOSCA-based sample configuration 39

2 DevStack user creation . 50

3 DevStack configuration header specification 50

4 DevStack main configuration file 52

5 DevStack components repository specification 52

6 DevStack enabling monitoring of services 53

7 DevStack download Docker hypervisor 53

8 DevStack enable Docker hypervisor support 54

9 DevStack bootstrap script . 54

10 Cloudify environment setup . 55

11 Vagrant VM settings . 55

12 DevStack VM configuration . 56

13 Spinning Vagrant VM . 57

14 Sample DevStack installation output 57

15 Keystone configuration . 58

16 Configuring cloud security group 59

17 Installing Python distribution 59

18 Installing Cloudify CLI in virtual environment 60

19 Fetching Cloudify configuration files 60

20 Cloudify Management input specification 60

21 OpenStack Authentification for Cloudify 61

22 Cloudify Bootstrap . 61

23 ViNNSL Specification Adaptation 63

24 ViNNSL Parser . 65

25 Generic backpropogation Neural Network 66

26 Server endpoints . 68

27 Dockerfile example configuration 69

79

A Abstract English

N2Sky was developed as a neural network simulation environment, which main

purpose was to provide different stakeholders with access to a robust and ef-

ficient computing resource. However, the current N2Sky implementation is

based on the Java programming language and deployed as a single mono-

lithic application, which was not well aligned with the distributed cloud-based

paradigm. That led to a decision of redesign of the N2Sky platform using

microservices approach and the new technological stack for the cloud infras-

tructure, which will allow to fully utilize the benefits of cloud computing.

Master thesis is focusing on two main parts of the architectural redesign

process: infrastructure redesign and architecture redesign. An important in-

frastructural change is a switch from Eucalyptus cloud infrastructure provider

to OpenStack. Internal Eucalyptus endpoints were previously designed to be

accessed using SOAP technology, and it added overhead to the infrastruc-

ture. OpenStack internal services are based on REST interfaces and support

orchestration tools, which suits better for the project infrastructure.

Application redesign is performed by adapting microservices approach -

whole application functionality is decomposed into separate modules, each of

them can be accessed through the provided API. Containerization technology

perfectly suits the microservices architectural approach. It allows not to be

restricted to a specific programming language or database storage technol-

ogy: all the components which are designed in a way that they are interacting

with each other through the API, so they are not aware of any internal im-

plementation details. As container quantity, can grow very fast, it becomes

clear that manual maintenance of numbers of containers can be a tough task,

especially considering a cloud environment. For that reason, is considered

container orchestration middleware. As a result, new architecture design of

the N2Sky system was delivered, alongside with decomposition guidelines and

development guides. New system revision is highly scalable and provides nec-

essary features to fully support agile development and fulfil needs of all types

of stakeholders.

80

B Abstract German

N2Sky wurde als Neuronennetz Simulationsumgebung entwickelt. Die Idee

war, den verschiedenen Stakeholder Zugang zu den robusten und effizien-

ten Computerressourcen gewhrt werden. Es wurde konzipiert, um natrliche

Untersttzung fr die Cloud-Bereitstellung mit verteilten Computerressourcen

zur Verfgung zu stellen. Die aktuelle N2Sky basiert jedoch auf der Java-

Programmiersprache und als eine einzige monolithische Applikation ist de-

ployed, die nicht gut auf das verteilte cloudbasierte Paradigma ausgerichtet

ist. Das fhrte zur Entscheidung fr ein Redesign der N2Sky-Plattform unter

Verwendung des Microservices-Ansatzes und des neuen technologischen Stacks

fr die Cloud-Infrastruktur, der es ermglichen wird, die Vorteile des Cloud-

Computing voll auszuschpfen.

Die Masterarbeit konzentriert sich auf zwei Hauptteile des architektonis-

chen Redesignprozesses: Infrastruktur-Redesign und Architektur-Redesign.

Ein wichtiger Infrastrukturwandel ist der Wechsel vom Eucalyptus Cloud zu

OpenStack. Interne endpoints Eucalyptus wurden frher so konzipiert, dass

Zugang nur durch SOAP Technologie mglich war. Das hat ein zustzliches

schwirigkeitsneveu zum System hinzugefgt. Die internen OpenStack Services

basieren auf REST-API und untersttzen Orchestrierungs-Tools, die sich besser

fr die Projektinfrastruktur anpassen.

Die Neugestaltung der Applikationen erfolgt durch Anpassung des Mi-

croservices - die gesamte Applikationenfunktionalitt wird sich in separate Mod-

ule zersetzt. Jeder von Ihnen kann ber die zur Verfgung gestellte API zugegrif-

fen werden. Die Containerisierungstechnologie passt perfekt zum Microservices-

Architekkturansatz. Es kann nicht auf eine bestimmte Programmiersprache

oder Datenbanktechnologie beschrnkt werden. Alle Komponenten, die so er-

stellt sind, dass sie ber die API miteinander interagieren, sodass sie sich keine

internen Implementierungsdetails bewusst sind. Da die Containermenge sehr

schnell wachsen kann, es wird klar, dass die manuelle Wartung von Contain-

ers eine schwierige Aufgabe sein kann, insbesondere unter Bercksichtigung

einer Cloud-Umgebung. Aus diesem Grund wird Container-Orchestrierungs-

Middleware betrachtet. Als Ergebnis wurde ein neues Architektur des N2Sky-

Systems geliefert, daneben mit Dekompositionsleitlinien und Entwicklungsan-

leitungen. Die neue Systemrevision ist hoch skalierbar und stellt zur Verfgung

die notwendigen Eigenheiten, um die agile Entwicklung voll zu untersttzen

und die Bedrfnisse aller Stakeholder zu erfllen.

81

	Introduction
	Motivation
	Terms and Definitions
	Related Work

	The N2SkyC Architecture
	Current Architecture Analysis
	General Scope

	Redesign Motivation
	Scaling and Architecture
	Microservices Architecture
	Microservices Infrastructure
	Component Decomposition Guidelines

	Technological Stack
	Cloud Infrastructure - OpenStack
	Virtualization Technologies
	Traditional Virtualization
	Container-based Virtualization
	Docker Platform

	Orchestration Tool
	Cloudify Platform

	Components and Topology Description
	Business Module
	Monitoring Module
	Infrastructure Module
	Computational Module
	UI Module

	Development Guide
	Cloud Infrastructure Guide
	Environment Setup
	DevStack Manual Installation
	DevStack - Virtual Environment

	Orchestration Management Guide
	Neural Network Development Guide

	Conclusions and Outlook
	Future Work

	Abstract English
	Abstract German

